FEM-Course-Matlab/18. 材料非线性问题matlab有限元编程/chuyingbian_0/Groundoverload_2111238.m

675 lines
21 KiB
Matlab

function Groundoverload_2111238(file_in)
% 本程序采用常应变三角形单元计算地面在局部超载作用下的变形和应力
% 全局变量
% gNode ------------- 节点坐标
% gElement ---------- 单元定义
% gMaterial --------- 材料性质
% gBC1 -------------- 约束条件
% gDF --------------- 分布力
% gK ---------------- 整体刚度矩阵
% gDelta ------------ 整体节点坐标
% gNodeStress ------- 节点应力
% gElementStress ---- 整体初应力
% gElementStrain ---- 整体应变
global gDelta
if nargin < 1
file_in = 'Groundoverload.dat' ;
end
% 检查文件是否存在
if exist( file_in ) == 0
fprintf( '错误:文件 %s 不存在\n', file_in )
fprintf( '程序终止\n' )
return ;
end
% 根据输入文件名称生成输出文件名称
[path_str,name_str,ext_str] = fileparts( file_in ) ;
ext_str_out = '.mat' ;
file_out = fullfile( path_str, [name_str, ext_str_out] ) ;
% 检查输出文件是否存在
if exist( file_out ) ~= 0
answer = input( sprintf( '文件 %s 已经存在,是否覆盖? ( Yes / [No] ): ', file_out ), 's' ) ;
if length( answer ) == 1
answer = 'no' ;
end
answer = lower( answer ) ;
if answer ~= 'y' | answer ~= 'yes'
fprintf( '请使用另外的文件名,或备份已有的文件\n' ) ;
fprintf( '程序终止\n' ) ;
return ;
end
end
% 建立有限元模型并求解,保存结果
FemModel( file_in ) ; % 定义有限元模型
SolveModel ; % 求解有限元模型
SaveResults( file_out ) ; % 保存计算结果
DisplayModel;
PlotDisplacement( 2 );
PlotDisplacementContour( 2, 10, 'r' );
% 计算结束
fprintf( '荷载中心点竖直位移 %f m\n', full( gDelta(170,1) ) ) ;
fprintf( '计算正常结束,结果保存在文件 %s 中\n', file_out ) ;
return ;
function FemModel(filename)
% 定义有限元模型
% 该函数定义平面问题的有限元模型数据:
% gNode ------- 节点定义
% gElement ---- 单元定义
% gMaterial --- 材料定义,包括弹性模量,梁的截面积和梁的抗弯惯性矩
% gBC1 -------- 约束条件
% gDF --------- 分布力
global gNode gElement gMaterial gBC1 gDF
% 打开文件
fid = fopen( filename, 'r' ) ;
% 读取节点坐标
node_number = fscanf( fid, '%d', 1 ) ;
gNode = zeros( node_number, 2 ) ;
for i=1:node_number
dummy = fscanf( fid, '%d', 1 ) ;
gNode( i, : ) = fscanf( fid, '%f', [1, 2] ) ;
end
% 读取单元定义
element_number = fscanf( fid, '%d', 1 ) ;
gElement = zeros( element_number, 4 ) ;
for i=1:element_number
dummy = fscanf( fid, '%d', 1 ) ;
gElement( i, : ) = fscanf( fid, '%d', [1, 4] ) ;
end
% 读取荷载信息
load_number = fscanf( fid, '%d', 1 ) ;
gDF = zeros( load_number, 4 ) ;
for i=1:load_number
dummy = fscanf( fid, '%d', 1 ) ;
gDF( i, : ) = fscanf( fid, '%f', [1, 4] ) ;
end
% 读取材料信息
material_number = fscanf( fid, '%d', 1 ) ;
gMaterial = zeros( material_number, 4 ) ;
for i=1:material_number
dummy = fscanf( fid, '%d', 1 ) ;
gMaterial( i, : ) = fscanf( fid, '%f', [1,4] ) ;
end
% 读取边界条件
bc1_number = fscanf( fid, '%d', 1 ) ;
gBC1 = zeros( bc1_number, 3 ) ;
for i=1:bc1_number
gBC1( i, 1 ) = fscanf( fid, '%d', 1 ) ;
gBC1( i, 2 ) = fscanf( fid, '%d', 1 ) ;
gBC1( i, 3 ) = fscanf( fid, '%f', 1 ) ;
end
% 关闭文件
fclose( fid ) ;
return
function SolveModel
% 求解有限元模型
% 该函数求解有限元模型,过程如下
% 1. 计算单元刚度矩阵,集成整体刚度矩阵
% 2. 计算单元的等效节点力,集成整体节点力向量
% 3. 处理约束条件,修改整体刚度矩阵和节点力向量
% 4. 求解方程组,得到整体节点位移向量
% 5. 计算单元应力和节点应力
global gNode gElement gMaterial gBC1 gK gDelta gNodeStress gElementStress gDF gElementStrain gFE
%% step 1. 定义整体刚度矩阵和节点力向量
[node_number,dummy] = size( gNode ) ;
gK = sparse( node_number * 2, node_number * 2 ) ;
gFE = sparse( node_number * 2, 1 ) ; %整体内力向量
f = sparse( node_number * 2, 1 ) ;
%% step 2. 计算单元刚度矩阵,并集成到整体刚度矩阵中
[element_number, dunmmy] = size( gElement ) ;
gElementStrain = zeros( element_number, 3) ; %整体应变矩阵
gElementStress = zeros( element_number, 6) ; %整体应力矩阵
for ie=1:1:element_number
k = StiffnessMatrix( ie ) ;
AssembleStiffnessMatrix( ie, k ) ;
end
%% step 3. 计算地面超载产生的等效节点力
[df_number,dummy] = size( gDF ) ;
for idf = 1:1:df_number
enf = EquivalentNodeForce( gDF(idf,1), gDF(idf,2), gDF(idf,3), gDF(idf,4) )*2 ; %适当扩大外力荷载,增加非线性效果
i = gElement( gDF(idf,1), 1 ) ;
j = gElement( gDF(idf,1), 2 ) ;
m = gElement( gDF(idf,1), 3 ) ;
f( (i-1)*2+1 : (i-1)*2+2 ) = f( (i-1)*2+1 : (i-1)*2+2 ) + enf( 1:2 ) ;
f( (j-1)*2+1 : (j-1)*2+2 ) = f( (j-1)*2+1 : (j-1)*2+2 ) + enf( 3:4 ) ;
f( (m-1)*2+1 : (m-1)*2+2 ) = f( (m-1)*2+1 : (m-1)*2+2 ) + enf( 5:6 ) ;
end
%% step 4. 处理约束条件,修改刚度矩阵和节点力向量。采用乘大数法
[bc_number,dummy] = size( gBC1 ) ;
for ibc=1:1:bc_number
n = gBC1(ibc, 1 ) ;
d = gBC1(ibc, 2 ) ;
m = (n-1)*2 + d ;
f(m) = gBC1(ibc, 3)* gK(m,m) * 1e20 ;
gK(m,m) = gK(m,m) * 1e20 ;
end
%% step 5 初应变法迭代
gDelta1=zeros(node_number * 2,1); %取初值delta0=0
E = gMaterial( gElement(ie, 4), 1 ) ;%生成弹性模量
mu = gMaterial( gElement(ie, 4), 2 ) ;%生成泊松比
D = [ 1-mu mu 0
mu 1-mu 0
0 0 (1-2*mu)/2] ;
D = D*E/(1-2*mu)/(1+mu) ; %建立D矩阵
%建立整体位移向量
AD=inv(D);%D的逆矩阵
js=0;
while true
%计算整体位移向量
for ie=1:1:element_number
if js==0
eps_l=zeros(3,1); %初应力
end
delta = NodeDe( ie,gDelta1);
eps = MatrixB( ie ) * delta; %公式2求epsilon0
sigma0= D * (eps-eps_l); %公式4-1
epsilon0_sigma=unlinerD_1(ie,sigma0)*sigma0;%公式3非线性关系
epsilon0=epsilon0_sigma-AD*sigma0;%公式4-2
eps_l=epsilon0;
for i = 1:1:3
gElementStrain(ie,i) = epsilon0(i);
end
FE = elementforce( ie ,gElementStrain(ie,:),D) ;
gFE = AssembleFE( ie, FE ) ;
end
%组装整体内力向量
gDelta = gK \ (f + gFE);
conv=norm(gDelta1-gDelta)/norm(gDelta)
fprintf('迭代次数:%d 不平衡力/总外力:%e \n',js,conv)
if conv<=1e-3||js>1000 %判断是否达到精度要求
break
else
gDelta1=gDelta;
end
js=js+1;
end
%% step 6. 计算节点应力(采用绕节点加权平均)
gNodeStress = zeros( node_number, 6 ) ;
for i=1:node_number
S = zeros( 1, 3 ) ;
A = 0 ;
for ie=1:1:element_number
for k=1:1:3
if i == gElement( ie, k )
area= ElementArea( ie ) ;
S = S + gElementStress(ie,1:3 ) * area ;
A = A + area ;
break ;
end
end
end
gNodeStress(i,1:3) = S / A ;
gNodeStress(i,6) = 0.5*sqrt( (gNodeStress(i,1)-gNodeStress(i,2))^2 + 4*gNodeStress(i,3)^2 ) ;
gNodeStress(i,4) = 0.5*(gNodeStress(i,1)+gNodeStress(i,2)) + gNodeStress(i,6) ;
gNodeStress(i,5) = 0.5*(gNodeStress(i,1)+gNodeStress(i,2)) - gNodeStress(i,6) ;
end
return
function B = MatrixB( ie )
% 计算单元的应变矩阵B
% 输入参数:
% ie ---- 单元号
% 返回值:
% B ---- 单元应变矩阵
global gNode gElement
xi = gNode( gElement( ie, 1 ), 1 ) ;
yi = gNode( gElement( ie, 1 ), 2 ) ;
xj = gNode( gElement( ie, 2 ), 1 ) ;
yj = gNode( gElement( ie, 2 ), 2 ) ;
xm = gNode( gElement( ie, 3 ), 1 ) ;
ym = gNode( gElement( ie, 3 ), 2 ) ;
ai = xj*ym - xm*yj ;
aj = xm*yi - xi*ym ;
am = xi*yj - xj*yi ;
bi = yj - ym ;
bj = ym - yi ;
bm = yi - yj ;
ci = -(xj-xm) ;
cj = -(xm-xi) ;
cm = -(xi-xj) ;
area = abs((ai+aj+am)/2) ;
B = [bi 0 bj 0 bm 0
0 ci 0 cj 0 cm
ci bi cj bj cm bm] ;
B = B/2/area ;
return
function area = ElementArea( ie )
% 计算单元面积
% 输入参数:
% ie ---- 单元号
% 返回值:
% area ---- 单元面积
global gNode gElement
xi = gNode( gElement( ie, 1 ), 1 ) ;
yi = gNode( gElement( ie, 1 ), 2 ) ;
xj = gNode( gElement( ie, 2 ), 1 ) ;
yj = gNode( gElement( ie, 2 ), 2 ) ;
xm = gNode( gElement( ie, 3 ), 1 ) ;
ym = gNode( gElement( ie, 3 ), 2 ) ;
ai = xj*ym - xm*yj ;
aj = xm*yi - xi*ym ;
am = xi*yj - xj*yi ;
area = abs((ai+aj+am)/2) ;
return
function k = StiffnessMatrix( ie )
% 计算单元刚度矩阵
% 输入参数:
% ie ---- 单元号
% 返回值:
% k ---- 单元刚度矩阵
global gElement gMaterial
k = zeros( 6, 6 ) ;
h = gMaterial( gElement(ie, 4), 3 ) ;
B = MatrixB( ie );
area = ElementArea( ie );
E = gMaterial( gElement(ie, 4), 1 ) ;
mu = gMaterial( gElement(ie, 4), 2 ) ;
D = [ 1-mu mu 0
mu 1-mu 0
0 0 (1-2*mu)/2] ;
D = D*E/(1-2*mu)/(1+mu) ;
k = transpose(B)*D*B*h*abs(area) ;
return
function FE = elementforce( ie ,ElementStrain,D)
% 计算单元力矩阵
% 输入参数:
% ie ---- 单元号
% 返回值:
% FE ---- 单元力
global gElement gMaterial
% FE = zeros( 6, 6 ) ;
thickness = gMaterial( gElement(ie, 4), 3 ) ;
area = ElementArea(ie);
B = MatrixB( ie );
% sigma0 = [gElementStress(ie,1);gElementStress(ie,2);gElementStress(ie,3)];
FE = transpose(B)*D*ElementStrain'*thickness*abs(area) ;
return
function gFE = AssembleFE(ie, FE)
global gElement gFE
for i = 1:1:3
gFE(gElement(ie,i)*2-1)=gFE(gElement(ie,i)*2-1)+FE(i*2-1);
gFE(gElement(ie,i)*2)=gFE(gElement(ie,i)*2)+FE(i*2);
end
return
function D_1 = unlinerD_1(ie,sigma)
%计算非线性弹性D矩阵
% 输入参数:
% ie ---- 单元号
% 返回值:
% D ---- D矩阵
global gElement gMaterial
E = gMaterial( gElement(ie, 4), 1 ) ;
mu = gMaterial( gElement(ie, 4), 2 ) ;
D = [ 1-mu mu 0
mu 1-mu 0
0 0 (1-2*mu)/2] ;
sigmax = sigma(1);
sigmay = sigma(2);
D_1 = inv(D)*((E-sigmax-sigmay)/(1-2*mu)/(1+mu) )^(-1); %注意算法无法模拟软化阶段,所以定义本构时候不能出现下降段本构
return
function delta = NodeDe( ie ,gDelta)
% 计算单元节点位移列阵
global gElement
delta = zeros( 6, 1 ) ;
for j=1:1:3
delta( 2*j-1 ) = gDelta( 2*gElement( ie, j )-1 ) ;
delta( 2*j ) = gDelta( 2*gElement( ie, j ) ) ;
end
return
function AssembleStiffnessMatrix( ie, k )
% 把单元刚度矩阵集成到整体刚度矩阵
% 输入参数:
% ie --- 单元号
% k --- 单元刚度矩阵
% 返回值:
% 无
global gElement gK
for i=1:1:3
for j=1:1:3
for p=1:1:2
for q=1:1:2
m = (i-1)*2+p ;
n = (j-1)*2+q ;
M = (gElement(ie,i)-1)*2+p ;
N = (gElement(ie,j)-1)*2+q ;
gK(M,N) = gK(M,N) + k(m,n) ;
end
end
end
end
return
function enf = EquivalentNodeForce( ie, aa, bb, ps )
% 计算线性分布荷载的等效节点力
% 输入参数:
% ie ----- 单元号
% aa ----- 终点节点号
% bb ----- 起点节点号
% ps ----- 荷载分布集度值
% 返回值:
% enf ----- 等效节点力向量
global gElement gNode gMaterial
enf = zeros(6,1) ;
h = gMaterial( gElement( ie, 4 ), 3 ) ;
xj = gNode( aa, 1 ) ;
yj = gNode( aa, 2 ) ;
xi = gNode( bb, 1 ) ;
yi = gNode( bb, 2 ) ;
f1 = h*ps*(yi-yj)/2 ;
f2 = h*ps*(xj-xi)/2 ;
f3 = h*ps*(yi-yj)/2 ;
f4 = h*ps*(xj-xi)/2 ;
% 弥补前处理中的节点乱序
switch ie
case 446
enf = [f1; f2; f3; f4; 0; 0] ;
case {492, 449, 456, 458, 460, 462}
enf = [0; 0; f1; f2; f3; f4] ;
case 437
enf = [f3; f4; 0; 0; f1; f2] ;
end
return
function SaveResults( file_out )
% 显示计算结果
% 输入参数:
% file_out --- 保存结果文件
% 返回值:
% 无
global gNode gElement gMaterial gBC1 gDelta gNodeStress gElementStress gK
save( file_out, 'gNode', 'gElement', 'gMaterial', 'gBC1', 'gDelta', 'gNodeStress', 'gElementStress', 'gK' ) ;
return
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function DisplayModel
% 用图形方式显示有限元模型
% 输入参数:
% 无
% 返回值:
% 无
global gNode gElement gMaterial gBC1
figure ;
axis equal ;
axis off ;
set( gcf, 'NumberTitle', 'off' ) ;
set( gcf, 'Name', '有限元模型' ) ;
% 根据不同的材料,显示单元颜色
[element_number, dummy] = size( gElement ) ;
material_color = [ 'r','g','b','c','m','y','w','k'] ;
for i=1:element_number
x1 = gNode( gElement( i, 1 ), 1 ) ;
x2 = gNode( gElement( i, 2 ), 1 ) ;
x3 = gNode( gElement( i, 3 ), 1 ) ;
x4 = gNode( gElement( i, 4 ), 1 ) ;
y1 = gNode( gElement( i, 1 ), 2 ) ;
y2 = gNode( gElement( i, 2 ), 2 ) ;
y3 = gNode( gElement( i, 3 ), 2 ) ;
y4 = gNode( gElement( i, 4 ), 2 ) ;
color_index = mod( 1, length( material_color ) ) ;
if color_index == 0
color_index = length( material_color ) ;
end
patch( [x1;x2;x3], [y1;y2;y3], material_color( color_index ) ) ;
end
% 显示边界条件
DisplayBC( 'blue' ) ;
return
function DisplayBC( color )
% 用图形方式显示有限元模型的边界条件
% 输入参数:
% color ---- 边界条件的颜色
% 返回值:
% 无
global gNode gBC1
% 确定边界条件的大小
xmin = min( gNode(:,1) ) ;
xmax = max( gNode(:,1) ) ;
factor = ( xmax - xmin ) / 25 ;
[bc1_number,dummy] = size( gBC1 ) ;
dBCSize = factor ;
for i=1:bc1_number
if( gBC1( i, 2 ) == 1 ) % x方向约束
x0 = gNode( gBC1( i, 1 ), 1 ) ;
y0 = gNode( gBC1( i, 1 ), 2 ) ;
x1 = x0 - dBCSize ;
y1 = y0 + dBCSize/2 ;
x2 = x1 ;
y2 = y0 - dBCSize/2 ;
hLine = line( [x0 x1 x2 x0], [y0 y1 y2 y0] ) ;
set( hLine, 'Color', color ) ;
xCenter = x1 - dBCSize/6 ;
yCenter = y0 + dBCSize/4 ;
radius = dBCSize/6 ;
theta=0:pi/6:2*pi ;
x = radius * cos( theta ) ;
y = radius * sin( theta ) ;
hLine = line( x+xCenter, y+yCenter ) ;
set( hLine, 'Color', color ) ;
hLine = line( x+xCenter, y+yCenter-dBCSize/2 ) ;
set( hLine, 'Color', color ) ;
x0 = x0 - dBCSize - dBCSize/3 ;
y0 = y0 + dBCSize/2 ;
x1 = x0 ;
y1 = y0 - dBCSize ;
hLine = line( [x0, x1], [y0, y1] ) ;
set( hLine, 'Color', color ) ;
x = [x0 x0-dBCSize/6] ;
y = [y0 y0-dBCSize/6] ;
hLine = line( x, y ) ;
set( hLine, 'Color', color ) ;
for j=1:1:4
hLine = line( x, y - dBCSize/4*j );
set( hLine, 'Color', color ) ;
end
else % y方向约束
x0 = gNode( gBC1( i, 1 ), 1 ) ;
y0 = gNode( gBC1( i, 1 ), 2 ) ;
x1 = x0 - dBCSize/2 ;
y1 = y0 - dBCSize ;
x2 = x1 + dBCSize ;
y2 = y1 ;
hLine = line( [x0 x1 x2 x0], [y0 y1 y2 y0] ) ;
set( hLine, 'Color', color ) ;
xCenter = x0 - dBCSize/4 ;
yCenter = y1 - dBCSize/6 ;
radius = dBCSize/6 ;
theta=0:pi/6:2*pi ;
x = radius * cos( theta ) ;
y = radius * sin( theta ) ;
hLine = line( x+xCenter, y+yCenter ) ;
set( hLine, 'Color', color ) ;
hLine = line( x+xCenter+dBCSize/2, y+yCenter ) ;
set( hLine, 'Color', color ) ;
hLine = line( [x1, x1+dBCSize], [y1-dBCSize/3, y1-dBCSize/3] ) ;
set( hLine, 'Color', color ) ;
x = [x1 x1-dBCSize/6] ;
y = [y1-dBCSize/3 y1-dBCSize/2] ;
hLine = line( x, y ) ;
set( hLine, 'Color', color ) ;
for j=1:1:4
hLine = line( x+dBCSize/4*j, y );
set( hLine, 'Color', color ) ;
end
end
end
return
function PlotDisplacement( iDisp )
% 显示位移云图
% 输入参数:
% iDisp --- 位移分量指示,它可以是下面的值
% 1 -- x方向位移
% 2 -- y方向位移
% 返回值:
% 无
global gNode gElement gDelta
switch iDisp
case 1
title = ' x 方向位移' ;
case 2
title = ' y 方向位移' ;
otherwise
fprintf( '位移分量错误\n' ) ;
return ;
end
figure ;
axis equal ;
axis off ;
set( gcf, 'NumberTitle', 'off' ) ;
set( gcf, 'Name', title ) ;
% gDelta
dispMin = min( gDelta( iDisp:2:length(gDelta) ) ) ;
dispMax = max( gDelta( iDisp:2:length(gDelta) ) ) ;
caxis( [dispMin, dispMax] ) ;
colormap( 'jet' ) ;
[element_number, dummy] = size( gElement ) ;
for ie=1:1:element_number
x = [ gNode( gElement( ie, 1 ), 1 ) ;
gNode( gElement( ie, 2 ), 1 ) ;
gNode( gElement( ie, 3 ), 1 ) ] ;
y = [ gNode( gElement( ie, 1 ), 2 ) ;
gNode( gElement( ie, 2 ), 2 ) ;
gNode( gElement( ie, 3 ), 2 ) ] ;
c = [ gDelta( ( gElement( ie, 1 ) - 1 ) * 2 + iDisp ) ;
gDelta( ( gElement( ie, 2 ) - 1 ) * 2 + iDisp ) ;
gDelta( ( gElement( ie, 3 ) - 1 ) * 2 + iDisp )] ;
set( patch( x, y, c ), 'EdgeColor', 'interp' ) ;
end
yTick = dispMin:(dispMax-dispMin)/10:dispMax ;
Label = cell( 1, length(yTick) );
for i=1:length(yTick)
Label{i} = sprintf( '%.2e', yTick(i) ) ;
end
set( colorbar( 'vert' ), 'YTick', yTick, 'YTickLabelMode', 'Manual', 'YTickLabel', Label ) ;
PlotDisplacementContour( iDisp, 10, 'white' ) ;
return
function PlotDisplacementContour( iDisp, nContour, color )
% 显示位移等值线
% 输入参数:
% iDisp ----- 位移分量指示,它可以是下面的值
% 1 -- x方向位移
% 2 -- y方向位移
% nContour -- 等值线的条数
% color ---- 等值线颜色
% 返回值:
% 无
global gNode gElement gDelta
[element_number, dummy] = size( gElement ) ;
[node_number, dummy] = size( gNode ) ;
dispMin = min( gDelta( iDisp:2:length(gDelta) ) ) ;
dispMax = max( gDelta( iDisp:2:length(gDelta) ) ) ;
dispDelta = (dispMax-dispMin)/( nContour+1 ) ;
dispContour = dispMin+dispDelta : dispDelta : dispMax - dispDelta ;
for ie=1:1:element_number
x = [ gNode( gElement( ie, 1 ), 1 ) ;
gNode( gElement( ie, 2 ), 1 ) ;
gNode( gElement( ie, 3 ), 1 ) ] ;
y = [ gNode( gElement( ie, 1 ), 2 ) ;
gNode( gElement( ie, 2 ), 2 ) ;
gNode( gElement( ie, 3 ), 2 )] ;
s = [ gDelta( ( gElement( ie, 1 ) - 1 ) * 2 + iDisp ) ;
gDelta( ( gElement( ie, 2 ) - 1 ) * 2 + iDisp ) ;
gDelta( ( gElement( ie, 3 ) - 1 ) * 2 + iDisp ) ] ;
for is = 1:1:nContour
[smax, ismax] = max( s ) ;
[smin, ismin] = min( s ) ;
if dispContour(is) > smax || dispContour(is) < smin
continue ;
end
x1 = x(ismin) + ( dispContour(is)- smin ) / (smax-smin) * ( x(ismax) - x(ismin) ) ;
y1 = y(ismin) + ( dispContour(is)- smin ) / (smax-smin) * ( y(ismax) - y(ismin) ) ;
for ismed=1:1:4
if ismed ~= ismax && ismed ~= ismin
break ;
end
end
if dispContour(is) < s( ismed )
x2 = x(ismin) + (dispContour(is)-smin)/(s(ismed)-smin)*(x(ismed)-x(ismin)) ;
y2 = y(ismin) + (dispContour(is)-smin)/(s(ismed)-smin)*(y(ismed)-y(ismin)) ;
else
x2 = x(ismed) + (dispContour(is)-s(ismed))/(smax-s(ismed))*(x(ismax)-x(ismed)) ;
y2 = y(ismed) + (dispContour(is)-s(ismed))/(smax-s(ismed))*(y(ismax)-y(ismed)) ;
end
set( line( [x1;x2], [y1;y2] ), 'color', color ) ;
end
end
return