20 lines
869 B
Mathematica
20 lines
869 B
Mathematica
|
|
|
|||
|
|
function [Ke]=Ke(D, ElementNodeCoordinate)
|
|||
|
|
%<EFBFBD><EFBFBD>ʼ<EFBFBD><EFBFBD><EFBFBD><EFBFBD>Ԫ<EFBFBD>ն<EFBFBD><EFBFBD><EFBFBD>
|
|||
|
|
Ke=zeros(12,12);
|
|||
|
|
% <EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>κ<EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ĵ<EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>NDerivative<EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ſɱȾ<EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ʽ<EFBFBD><EFBFBD>JacobiDET<EFBFBD><EFBFBD>
|
|||
|
|
[NDxyz, JacobiDET] = ShapeFunction( ElementNodeCoordinate);%[DN1Dx DN2Dx DN3Dx;DN1Dy DN2Dy DN3Dy;<EFBFBD><EFBFBD><EFBFBD><EFBFBD>]
|
|||
|
|
Ve = JacobiDET/6;%
|
|||
|
|
%<EFBFBD><EFBFBD><EFBFBD><EFBFBD>B<EFBFBD><EFBFBD><EFBFBD><EFBFBD> <EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>κ<EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ĵ<EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>NDxyz<EFBFBD><EFBFBD><EFBFBD><EFBFBD>B<EFBFBD><EFBFBD><EFBFBD>м<EFBFBD><EFBFBD><EFBFBD>
|
|||
|
|
B=zeros(6,12);
|
|||
|
|
for i=1:4
|
|||
|
|
sub=(i-1)*3+1:(i-1)*3+3;%<EFBFBD>Ӿ<EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>Χ
|
|||
|
|
B(:,sub)=[NDxyz(1,i) 0 0;%NDx
|
|||
|
|
0 NDxyz(2,i) 0;%NDy
|
|||
|
|
0 0 NDxyz(3,i);%NDz
|
|||
|
|
NDxyz(2,i) NDxyz(1,i) 0;
|
|||
|
|
0 NDxyz(3,i) NDxyz(2,i);
|
|||
|
|
NDxyz(3,i) 0 NDxyz(1,i)];
|
|||
|
|
end
|
|||
|
|
Ke=Ke+Ve*B'*D*B; %<EFBFBD><EFBFBD>ֵ<EFBFBD><EFBFBD><EFBFBD>֣<EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ֵ<EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
|
|||
|
|
end
|