9 lines
512 B
Mathematica
9 lines
512 B
Mathematica
|
|
|
|||
|
|
function [NDxyz,JacobiDET] = ShapeFunction(ElementNodeCoordinate)
|
|||
|
|
%<EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>κ<EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>κ<EFBFBD><EFBFBD><EFBFBD><EFBFBD>Ծֲ<EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ksi eta zeta<EFBFBD>ĵ<EFBFBD><EFBFBD><EFBFBD>
|
|||
|
|
NDL = [-1 1 0 0;-1 0 1 0;-1 0 0 1];%3*4 [N1Dksi N2Dksi N3Dksi N4Dksi;N1Deta N2Deta N3Deta N4Deta<EFBFBD><EFBFBD><EFBFBD><EFBFBD>]
|
|||
|
|
Jacobi = NDL*ElementNodeCoordinate;%<EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ſɱȾ<EFBFBD><EFBFBD><EFBFBD>3*4 4*3
|
|||
|
|
JacobiDET = det(Jacobi);%<EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ſɱ<EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ʽ3*3 [DxDksi DyDksi DzDksi;DxDeta<EFBFBD><EFBFBD><EFBFBD><EFBFBD>
|
|||
|
|
JacobiINV=inv(Jacobi);%<EFBFBD><EFBFBD><EFBFBD>ſɱ<EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ʽ<EFBFBD><EFBFBD><EFBFBD><EFBFBD>3*3
|
|||
|
|
NDxyz=JacobiINV*NDL;%<EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ſɱ<EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ʽ<EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>κ<EFBFBD><EFBFBD><EFBFBD><EFBFBD>Խṹ<EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ĵ<EFBFBD><EFBFBD><EFBFBD>[DN1Dx DN2Dx DN3Dx;DN1Dy DN2Dy DN3Dy;<EFBFBD><EFBFBD><EFBFBD><EFBFBD>]
|
|||
|
|
end
|