31 lines
779 B
Mathematica
31 lines
779 B
Mathematica
|
|
function enf = EquivalentNodeForce( ie, aa, bb, ps )
|
|||
|
|
% <EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>Էֲ<EFBFBD><EFBFBD><EFBFBD><EFBFBD>صĵ<EFBFBD>Ч<EFBFBD>ڵ<EFBFBD><EFBFBD><EFBFBD>
|
|||
|
|
% <EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>:
|
|||
|
|
% ie ----- <EFBFBD><EFBFBD>Ԫ<EFBFBD><EFBFBD>
|
|||
|
|
% aa ----- <EFBFBD>յ<EFBFBD><EFBFBD>ڵ<EFBFBD><EFBFBD><EFBFBD>
|
|||
|
|
% bb ----- <EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ڵ<EFBFBD><EFBFBD><EFBFBD>
|
|||
|
|
% ps ----- <EFBFBD><EFBFBD><EFBFBD>طֲ<EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ֵ
|
|||
|
|
% <EFBFBD><EFBFBD><EFBFBD><EFBFBD>ֵ:
|
|||
|
|
% enf ----- <EFBFBD><EFBFBD>Ч<EFBFBD>ڵ<EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
|
|||
|
|
global gElement gNode gMaterial
|
|||
|
|
enf = zeros(6,1) ;
|
|||
|
|
h = gMaterial( gElement( ie, 4 ), 3 ) ;
|
|||
|
|
xj = gNode( aa, 1 ) ;
|
|||
|
|
yj = gNode( aa, 2 ) ;
|
|||
|
|
xi = gNode( bb, 1 ) ;
|
|||
|
|
yi = gNode( bb, 2 ) ;
|
|||
|
|
f1 = h*ps*(yi-yj)/2 ;
|
|||
|
|
f2 = h*ps*(xj-xi)/2 ;
|
|||
|
|
f3 = h*ps*(yi-yj)/2 ;
|
|||
|
|
f4 = h*ps*(xj-xi)/2 ;
|
|||
|
|
|
|||
|
|
% <EFBFBD>ֲ<EFBFBD>ǰ<EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>еĽڵ<EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
|
|||
|
|
switch ie
|
|||
|
|
case 446
|
|||
|
|
enf = [f1; f2; f3; f4; 0; 0] ;
|
|||
|
|
case {492, 449, 456, 458, 460, 462}
|
|||
|
|
enf = [0; 0; f1; f2; f3; f4] ;
|
|||
|
|
case 437
|
|||
|
|
enf = [f3; f4; 0; 0; f1; f2] ;
|
|||
|
|
end
|
|||
|
|
return
|