FEM-Course-Matlab/9.四面体单元悬臂梁Matlab有限元编程/ShapeFunction.m

9 lines
512 B
Mathematica
Raw Permalink Normal View History

2024-01-28 16:46:36 +00:00
function [NDxyz,JacobiDET] = ShapeFunction(ElementNodeCoordinate)
%<EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>κ<EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>κ<EFBFBD><EFBFBD><EFBFBD><EFBFBD>Ծֲ<EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ksi eta zeta<EFBFBD>ĵ<EFBFBD><EFBFBD><EFBFBD>
NDL = [-1 1 0 0;-1 0 1 0;-1 0 0 1];%3*4 [N1Dksi N2Dksi N3Dksi N4Dksi;N1Deta N2Deta N3Deta N4Deta<EFBFBD><EFBFBD><EFBFBD><EFBFBD>]
Jacobi = NDL*ElementNodeCoordinate;%<EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ſɱȾ<EFBFBD><EFBFBD><EFBFBD>3*4 4*3
JacobiDET = det(Jacobi);%<EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ſɱ<EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ʽ3*3 [DxDksi DyDksi DzDksi;DxDeta<EFBFBD><EFBFBD><EFBFBD><EFBFBD>
JacobiINV=inv(Jacobi);%<EFBFBD><EFBFBD><EFBFBD>ſɱ<EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ʽ<EFBFBD><EFBFBD><EFBFBD><EFBFBD>3*3
NDxyz=JacobiINV*NDL;%<EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ſɱ<EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ʽ<EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>κ<EFBFBD><EFBFBD><EFBFBD><EFBFBD>Խ<EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ĵ<EFBFBD><EFBFBD><EFBFBD>[DN1Dx DN2Dx DN3Dx;DN1Dy DN2Dy DN3Dy;<EFBFBD><EFBFBD><EFBFBD><EFBFBD>]
end