26 lines
841 B
Mathematica
26 lines
841 B
Mathematica
|
|
function es = ElementStress( ie )
|
|||
|
|
% <EFBFBD><EFBFBD><EFBFBD>㵥Ԫ<EFBFBD><EFBFBD>Ӧ<EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
|
|||
|
|
% <EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
|
|||
|
|
% ie ----- <EFBFBD><EFBFBD>Ԫ<EFBFBD><EFBFBD>
|
|||
|
|
% <EFBFBD><EFBFBD><EFBFBD><EFBFBD>ֵ
|
|||
|
|
% es ----- <EFBFBD><EFBFBD>ԪӦ<EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>1<EFBFBD><EFBFBD>6<EFBFBD><EFBFBD><EFBFBD><EFBFBD> [sx, sy, txy, s1, s2, tmax]
|
|||
|
|
global gElement gDelta gMaterial
|
|||
|
|
|
|||
|
|
es = zeros( 1, 6 ) ; % <EFBFBD><EFBFBD>Ԫ<EFBFBD><EFBFBD>Ӧ<EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
|
|||
|
|
de = zeros( 6, 1 ) ; % <EFBFBD><EFBFBD>Ԫ<EFBFBD>ڵ<EFBFBD>λ<EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
|
|||
|
|
E = gMaterial( gElement(ie, 4), 1 ) ;
|
|||
|
|
mu = gMaterial( gElement(ie, 4), 2 ) ;
|
|||
|
|
D = [ 1-mu mu 0
|
|||
|
|
mu 1-mu 0
|
|||
|
|
0 0 (1-2*mu)/2] ;
|
|||
|
|
D = D*E/(1-2*mu)/(1+mu) ;
|
|||
|
|
B = MatrixB( ie ) ;
|
|||
|
|
for j=1:1:3
|
|||
|
|
de( 2*j-1 ) = gDelta( 2*gElement( ie, j )-1 ) ;
|
|||
|
|
de( 2*j ) = gDelta( 2*gElement( ie, j ) ) ;
|
|||
|
|
end
|
|||
|
|
es(1:3) = D * B * de ;
|
|||
|
|
es(6) = 0.5*sqrt((es(1)-es(2))^2 + 4*es(3)^2 ) ;
|
|||
|
|
es(4) = 0.5*(es(1)+es(2)) + es(6) ;
|
|||
|
|
es(5) = 0.5*(es(1)+es(2)) - es(6) ;
|
|||
|
|
return
|