19 lines
548 B
Mathematica
19 lines
548 B
Mathematica
|
|
function PlotResults2(Nodes,Elements,gNTu,SF) % 2<EFBFBD><EFBFBD><EFBFBD>ӳ<EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ʾ
|
|||
|
|
figure
|
|||
|
|
% global gNdt gElt gNTu
|
|||
|
|
%<EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>Ԫ<EFBFBD><EFBFBD><EFBFBD><EFBFBD>˳<EFBFBD><EFBFBD>
|
|||
|
|
gElt_plot = Elements;
|
|||
|
|
|
|||
|
|
|
|||
|
|
dFau = SF ; % <EFBFBD><EFBFBD><EFBFBD><EFBFBD>ͼ<EFBFBD>Ŵ<EFBFBD>ϵ<EFBFBD><EFBFBD>
|
|||
|
|
|
|||
|
|
%% <EFBFBD><EFBFBD><EFBFBD>Ʊ<EFBFBD><EFBFBD><EFBFBD>ǰ<EFBFBD><EFBFBD><EFBFBD><EFBFBD>
|
|||
|
|
trisurf( gElt_plot , Nodes( : , 1 ) , Nodes( : , 2 ) , zeros(size(Nodes,1),1))
|
|||
|
|
view(2); axis equal; axis off; axis tight; alpha(0.5);
|
|||
|
|
hold on
|
|||
|
|
|
|||
|
|
%% <EFBFBD><EFBFBD>ȡ<EFBFBD><EFBFBD><EFBFBD>κ<EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
|
|||
|
|
DDisp = Nodes + gNTu * dFau;
|
|||
|
|
% pause( 3.0 );
|
|||
|
|
trisurf( gElt_plot , DDisp( : , 1 ) , DDisp( : , 2 ) , zeros(size(DDisp,1),1));
|
|||
|
|
view(2); axis equal; axis off; axis tight;alpha(0.5);
|