79 lines
3.3 KiB
Matlab
79 lines
3.3 KiB
Matlab
function taumat ...
|
|
= InverseDynamicsTrajectory(thetamat, dthetamat, ddthetamat, ...
|
|
g, Ftipmat, Mlist, Glist, Slist)
|
|
% *** CHAPTER 8: DYNAMICS OF OPEN CHAINS ***
|
|
% Takes thetamat: An N x n matrix of robot joint variables,
|
|
% dthetamat: An N x n matrix of robot joint velocities,
|
|
% ddthetamat: An N x n matrix of robot joint accelerations,
|
|
% g: Gravity vector g,
|
|
% Ftipmat: An N x 6 matrix of spatial forces applied by the
|
|
% end-effector (If there are no tip forces, the user should
|
|
% input a zero and a zero matrix will be used),
|
|
% Mlist: List of link frames i relative to i-1 at the home position,
|
|
% Glist: Spatial inertia matrices Gi of the links,
|
|
% Slist: Screw axes Si of the joints in a space frame, in the format
|
|
% of a matrix with the screw axes as the columns.
|
|
% Returns taumat: The N x n matrix of joint forces/torques for the
|
|
% specified trajectory, where each of the N rows is the
|
|
% vector of joint forces/torques at each time step.
|
|
% This function uses InverseDynamics to calculate the joint forces/torques
|
|
% required to move the serial chain along the given trajectory.
|
|
% Example Inputs (3 Link Robot)
|
|
|
|
% clc; clear;
|
|
% %Create a trajectory to follow using functions from Chapter 9
|
|
% thetastart = [0; 0; 0];
|
|
% thetaend = [pi / 2; pi / 2; pi / 2];
|
|
% Tf = 3;
|
|
% N= 1000;
|
|
% method = 5 ;
|
|
% traj = JointTrajectory(thetastart, thetaend, Tf, N, method);
|
|
% thetamat = traj;
|
|
% dthetamat = zeros(1000, 3);
|
|
% ddthetamat = zeros(1000, 3);
|
|
% dt = Tf / (N - 1);
|
|
% for i = 1: N - 1
|
|
% dthetamat(i + 1, :) = (thetamat(i + 1, :) - thetamat(i, :)) / dt;
|
|
% ddthetamat(i + 1, :) = (dthetamat(i + 1, :) - dthetamat(i, :)) / dt;
|
|
% end
|
|
% %Initialise robot descripstion (Example with 3 links)
|
|
% g = [0; 0; -9.8];
|
|
% Ftipmat = ones(N, 6);
|
|
% M01 = [[1, 0, 0, 0]; [0, 1, 0, 0]; [0, 0, 1, 0.089159]; [0, 0, 0, 1]];
|
|
% M12 = [[0, 0, 1, 0.28]; [0, 1, 0, 0.13585]; [-1, 0 ,0, 0]; [0, 0, 0, 1]];
|
|
% M23 = [[1, 0, 0, 0]; [0, 1, 0, -0.1197]; [0, 0, 1, 0.395]; [0, 0, 0, 1]];
|
|
% M34 = [[1, 0, 0, 0]; [0, 1, 0, 0]; [0, 0, 1, 0.14225]; [0, 0, 0, 1]];
|
|
% G1 = diag([0.010267, 0.010267, 0.00666, 3.7, 3.7, 3.7]);
|
|
% G2 = diag([0.22689, 0.22689, 0.0151074, 8.393, 8.393, 8.393]);
|
|
% G3 = diag([0.0494433, 0.0494433, 0.004095, 2.275, 2.275, 2.275]);
|
|
% Glist = cat(3, G1, G2, G3);
|
|
% Mlist = cat(3, M01, M12, M23, M34);
|
|
% Slist = [[1; 0; 1; 0; 1; 0], ...
|
|
% [0; 1; 0; -0.089; 0; 0], ...
|
|
% [0; 1; 0; -0.089; 0; 0.425]];
|
|
% taumat = InverseDynamicsTrajectory(thetamat, dthetamat, ddthetamat, ...
|
|
% g, Ftipmat, Mlist, Glist, Slist);
|
|
% %Output using matplotlib to plot the joint forces/torques
|
|
% time=0: dt: Tf;
|
|
% plot(time, taumat(:, 1), 'b')
|
|
% hold on
|
|
% plot(time, taumat(:, 2), 'g')
|
|
% plot(time, taumat(:, 3), 'r')
|
|
% title('Plot for Torque Trajectories')
|
|
% xlabel('Time')
|
|
% ylabel('Torque')
|
|
% legend('Tau1', 'Tau2', 'Tau3')
|
|
%
|
|
|
|
thetamat = thetamat';
|
|
dthetamat = dthetamat';
|
|
ddthetamat = ddthetamat';
|
|
Ftipmat = Ftipmat';
|
|
taumat = thetamat;
|
|
for i = 1: size(thetamat, 2)
|
|
taumat(:, i) ...
|
|
= InverseDynamics(thetamat(:, i), dthetamat(:, i), ddthetamat(:, i), ...
|
|
g, Ftipmat(:, i), Mlist, Glist, Slist);
|
|
end
|
|
taumat = taumat';
|
|
end |