%*** CHAPTER 11: ROBOT CONTROL *** function taulist = ComputedTorque(thetalist, dthetalist, eint, g, ... Mlist, Glist, Slist, thetalistd, ... dthetalistd, ddthetalistd, Kp, Ki, Kd) % Takes thetalist: n-vector of joint variables, % dthetalist: n-vector of joint rates, % eint: n-vector of the time-integral of joint errors, % g: Gravity vector g, % Mlist: List of link frames {i} relative to {i-1} at the home % position, % Glist: Spatial inertia matrices Gi of the links, % Slist: Screw axes Si of the joints in a space frame, in the format % of a matrix with the screw axes as the columns, % thetalistd: n-vector of reference joint variables, % dthetalistd: n-vector of reference joint velocities, % ddthetalistd: n-vector of reference joint accelerations, % Kp: The feedback proportional gain (identical for each joint), % Ki: The feedback integral gain (identical for each joint), % Kd: The feedback derivative gain (identical for each joint). % Returns taulist: The vector of joint forces/torques computed by the % feedback linearizing controller at the current instant. % Example Input: %{ clc; clear; thetalist = [0.1; 0.1; 0.1]; dthetalist = [0.1; 0.2; 0.3]; eint = [0.2; 0.2; 0.2]; g = [0; 0; -9.8]; M01 = [[1, 0, 0, 0]; [0, 1, 0, 0]; [0, 0, 1, 0.089159]; [0, 0, 0, 1]]; M12 = [[0, 0, 1, 0.28]; [0, 1, 0, 0.13585]; [-1, 0 ,0, 0]; [0, 0, 0, 1]]; M23 = [[1, 0, 0, 0]; [0, 1, 0, -0.1197]; [0, 0, 1, 0.395]; [0, 0, 0, 1]]; M34 = [[1, 0, 0, 0]; [0, 1, 0, 0]; [0, 0, 1, 0.14225]; [0, 0, 0, 1]]; G1 = diag([0.010267, 0.010267, 0.00666, 3.7, 3.7, 3.7]); G2 = diag([0.22689, 0.22689, 0.0151074, 8.393, 8.393, 8.393]); G3 = diag([0.0494433, 0.0494433, 0.004095, 2.275, 2.275, 2.275]); Glist = cat(3, G1, G2, G3); Mlist = cat(3, M01, M12, M23, M34); Slist = [[1; 0; 1; 0; 1; 0], ... [0; 1; 0; -0.089; 0; 0], ... [0; 1; 0; -0.089; 0; 0.425]]; thetalistd = [1; 1; 1]; dthetalistd = [2; 1.2; 2]; ddthetalistd = [0.1; 0.1; 0.1]; Kp = 1.3; Ki = 1.2; Kd = 1.1; taulist ... = ComputedTorque(thetalist, dthetalist, eint, g, Mlist, Glist, Slist, ... thetalistd, dthetalistd, ddthetalistd, Kp, Ki, Kd) %} % Output: % taulist = % 133.0053 % -29.9422 % -3.0328 e = thetalistd - thetalist; taulist ... = MassMatrix(thetalist, Mlist, Glist, Slist) ... * (Kp * e + Ki * (eint + e) + Kd * (dthetalistd - dthetalist)) ... + InverseDynamics(thetalist, dthetalist, ddthetalistd, g, ... zeros(6, 1), Mlist, Glist, Slist); end