%*** CHAPTER 8: DYNAMICS OF OPEN CHAINS *** function taulist = InverseDynamics(thetalist, dthetalist, ddthetalist, ... g, Ftip, Mlist, Glist, Slist) % Takes thetalist: n-vector of joint variables, % dthetalist: n-vector of joint rates, % ddthetalist: n-vector of joint accelerations, % g: Gravity vector g, % Ftip: Spatial force applied by the end-effector expressed in frame % {n+1}, % Mlist: List of link frames {i} relative to {i-1} at the home % position, % Glist: Spatial inertia matrices Gi of the links, % Slist: Screw axes Si of the joints in a space frame, in the format % of a matrix with the screw axes as the columns. % Returns taulist: The n-vector of required joint forces/torques. % This function uses forward-backward Newton-Euler iterations to solve the % equation: % taulist = Mlist(thetalist) * ddthetalist + c(thetalist, dthetalist) ... % + g(thetalist) + Jtr(thetalist) * Ftip % Example Input (3 Link Robot): %{ clear; clc; thetalist = [0.1; 0.1; 0.1]; dthetalist = [0.1; 0.2; 0.3]; ddthetalist = [2; 1.5; 1]; g = [0; 0; -9.8]; Ftip = [1; 1; 1; 1; 1; 1]; M01 = [[1, 0, 0, 0]; [0, 1, 0, 0]; [0, 0, 1, 0.089159]; [0, 0, 0, 1]]; M12 = [[0, 0, 1, 0.28]; [0, 1, 0, 0.13585]; [-1, 0 ,0, 0]; [0, 0, 0, 1]]; M23 = [[1, 0, 0, 0]; [0, 1, 0, -0.1197]; [0, 0, 1, 0.395]; [0, 0, 0, 1]]; M34 = [[1, 0, 0, 0]; [0, 1, 0, 0]; [0, 0, 1, 0.14225]; [0, 0, 0, 1]]; G1 = diag([0.010267, 0.010267, 0.00666, 3.7, 3.7, 3.7]); G2 = diag([0.22689, 0.22689, 0.0151074, 8.393, 8.393, 8.393]); G3 = diag([0.0494433, 0.0494433, 0.004095, 2.275, 2.275, 2.275]); Glist = cat(3, G1, G2, G3); Mlist = cat(3, M01, M12, M23, M34); Slist = [[1; 0; 1; 0; 1; 0], ... [0; 1; 0; -0.089; 0; 0], ... [0; 1; 0; -0.089; 0; 0.425]]; taulist = InverseDynamics(thetalist, dthetalist, ddthetalist, g, ... Ftip, Mlist, Glist, Slist) %} % Output: % taulist = % 74.6962 % -33.0677 % -3.2306 n = size(thetalist, 1); Mi = eye(4); Ai = zeros(6, n); AdTi = zeros(6, 6, n + 1); Vi = zeros(6, n + 1); Vdi = zeros(6, n + 1); Vdi(4: 6, 1) = -g; AdTi(:, :, n + 1) = Adjoint(TransInv(Mlist(:, :, n + 1))); Fi = Ftip; taulist = zeros(n, 1); for i=1: n Mi = Mi * Mlist(:, :, i); Ai(:, i) = Adjoint(TransInv(Mi)) * Slist(:, i); AdTi(:, :, i) = Adjoint(MatrixExp6(VecTose3(Ai(:, i) ... * -thetalist(i))) * TransInv(Mlist(:, :, i))); Vi(:, i + 1) = AdTi(:, :, i) * Vi(:, i) + Ai(:, i) * dthetalist(i); Vdi(:, i + 1) = AdTi(:, :, i) * Vdi(:, i) ... + Ai(:, i) * ddthetalist(i) ... + ad(Vi(:, i + 1)) * Ai(:, i) * dthetalist(i); end for i = n: -1: 1 Fi = AdTi(:, :, i + 1)' * Fi + Glist(:, :, i) * Vdi(:, i + 1) ... - ad(Vi(:, i + 1))' * (Glist(:, :, i) * Vi(:, i + 1)); taulist(i) = Fi' * Ai(:, i); end end