%*** CHAPTER 8: DYNAMICS OF OPEN CHAINS *** function M = MassMatrix(thetalist, Mlist, Glist, Slist) % Takes thetalist: A list of joint variables, % Mlist: List of link frames i relative to i-1 at the home position, % Glist: Spatial inertia matrices Gi of the links, % Slist: Screw axes Si of the joints in a space frame, in the format % of a matrix with the screw axes as the columns. % Returns M: The numerical inertia matrix M(thetalist) of an n-joint serial % chain at the given configuration thetalist. % This function calls InverseDynamics n times, each time passing a % ddthetalist vector with a single element equal to one and all other % inputs set to zero. Each call of InverseDynamics generates a single % column, and these columns are assembled to create the inertia matrix. % Example Input (3 Link Robot): %{ clear; clc; thetalist = [0.1; 0.1; 0.1]; M01 = [[1, 0, 0, 0]; [0, 1, 0, 0]; [0, 0, 1, 0.089159]; [0, 0, 0, 1]]; M12 = [[0, 0, 1, 0.28]; [0, 1, 0, 0.13585]; [-1, 0 ,0, 0]; [0, 0, 0, 1]]; M23 = [[1, 0, 0, 0]; [0, 1, 0, -0.1197]; [0, 0, 1, 0.395]; [0, 0, 0, 1]]; M34 = [[1, 0, 0, 0]; [0, 1, 0, 0]; [0, 0, 1, 0.14225]; [0, 0, 0, 1]]; G1 = diag([0.010267, 0.010267, 0.00666, 3.7, 3.7, 3.7]); G2 = diag([0.22689, 0.22689, 0.0151074, 8.393, 8.393, 8.393]); G3 = diag([0.0494433, 0.0494433, 0.004095, 2.275, 2.275, 2.275]); Glist = cat(3, G1, G2, G3); Mlist = cat(3, M01, M12, M23, M34); Slist = [[1; 0; 1; 0; 1; 0], ... [0; 1; 0; -0.089; 0; 0], ... [0; 1; 0; -0.089; 0; 0.425]]; M = MassMatrix(thetalist, Mlist, Glist, Slist) %} % Output: % M = % 22.5433 -0.3071 -0.0072 % -0.3071 1.9685 0.4322 % -0.0072 0.4322 0.1916 n = size(thetalist, 1); M = zeros(n); for i = 1: n ddthetalist = zeros(n, 1); ddthetalist(i) = 1; M(:, i) = InverseDynamics(thetalist, zeros(n, 1), ddthetalist, ... [0; 0; 0], [0; 0; 0; 0; 0; 0],Mlist, ... Glist, Slist); end end