%*** CHAPTER 8: DYNAMICS OF OPEN CHAINS *** function taumat ... = InverseDynamicsTrajectory(thetamat, dthetamat, ddthetamat, ... g, Ftipmat, Mlist, Glist, Slist) % Takes thetamat: An N x n matrix of robot joint variables, % dthetamat: An N x n matrix of robot joint velocities, % ddthetamat: An N x n matrix of robot joint accelerations, % g: Gravity vector g, % Ftipmat: An N x 6 matrix of spatial forces applied by the % end-effector (If there are no tip forces, the user should % input a zero and a zero matrix will be used), % Mlist: List of link frames i relative to i-1 at the home position, % Glist: Spatial inertia matrices Gi of the links, % Slist: Screw axes Si of the joints in a space frame, in the format % of a matrix with the screw axes as the columns. % Returns taumat: The N x n matrix of joint forces/torques for the % specified trajectory, where each of the N rows is the % vector of joint forces/torques at each time step. % This function uses InverseDynamics to calculate the joint forces/torques % required to move the serial chain along the given trajectory. % Example Inputs (3 Link Robot) %{ clc; clear; %Create a trajectory to follow using functions from Chapter 9 thetastart = [0; 0; 0]; thetaend = [pi / 2; pi / 2; pi / 2]; Tf = 3; N= 1000; method = 5 ; traj = JointTrajectory(thetastart, thetaend, Tf, N, method); thetamat = traj; dthetamat = zeros(1000, 3); ddthetamat = zeros(1000, 3); dt = Tf / (N - 1); for i = 1: N - 1 dthetamat(i + 1, :) = (thetamat(i + 1, :) - thetamat(i, :)) / dt; ddthetamat(i + 1, :) = (dthetamat(i + 1, :) - dthetamat(i, :)) / dt; end %Initialise robot descripstion (Example with 3 links) g = [0; 0; -9.8]; Ftipmat = ones(N, 6); M01 = [[1, 0, 0, 0]; [0, 1, 0, 0]; [0, 0, 1, 0.089159]; [0, 0, 0, 1]]; M12 = [[0, 0, 1, 0.28]; [0, 1, 0, 0.13585]; [-1, 0 ,0, 0]; [0, 0, 0, 1]]; M23 = [[1, 0, 0, 0]; [0, 1, 0, -0.1197]; [0, 0, 1, 0.395]; [0, 0, 0, 1]]; M34 = [[1, 0, 0, 0]; [0, 1, 0, 0]; [0, 0, 1, 0.14225]; [0, 0, 0, 1]]; G1 = diag([0.010267, 0.010267, 0.00666, 3.7, 3.7, 3.7]); G2 = diag([0.22689, 0.22689, 0.0151074, 8.393, 8.393, 8.393]); G3 = diag([0.0494433, 0.0494433, 0.004095, 2.275, 2.275, 2.275]); Glist = cat(3, G1, G2, G3); Mlist = cat(3, M01, M12, M23, M34); Slist = [[1; 0; 1; 0; 1; 0], ... [0; 1; 0; -0.089; 0; 0], ... [0; 1; 0; -0.089; 0; 0.425]]; taumat = InverseDynamicsTrajectory(thetamat, dthetamat, ddthetamat, ... g, Ftipmat, Mlist, Glist, Slist); %Output using matplotlib to plot the joint forces/torques time=0: dt: Tf; plot(time, taumat(:, 1), 'b') hold on plot(time, taumat(:, 2), 'g') plot(time, taumat(:, 3), 'r') title('Plot for Torque Trajectories') xlabel('Time') ylabel('Torque') legend('Tau1', 'Tau2', 'Tau3') %} thetamat = thetamat'; dthetamat = dthetamat'; ddthetamat = ddthetamat'; Ftipmat = Ftipmat'; taumat = thetamat; for i = 1: size(thetamat, 2) taumat(:, i) ... = InverseDynamics(thetamat(:, i), dthetamat(:, i), ddthetamat(:, i), ... g, Ftipmat(:, i), Mlist, Glist, Slist); end taumat = taumat'; end