%*** CHAPTER 8: DYNAMICS OF OPEN CHAINS *** function taulist = InverseDynamics(thetalist,dthetalist,ddthetalist,g, ... Ftip,Mlist,Glist,Slist) % Takes thetalist: n-vector of joint variables, % dthetalist: n-vector of joint rates, % ddthetalist: n-vector of joint accelerations, % g: Gravity vector g, % Ftip: Spatial force applied by the end-effector expressed in frame % {n+1}, % Mlist: List of link frames {i} relative to {i-1} at the home % position, % Glist: Spatial inertia matrices Gi of the links, % Slist: Screw axes Si of the joints in a space frame. % Returns taulist: The n-vector of required joint forces/torques. % This function uses forward-backward Newton-Euler iterations to solve the % equation: % taulist = Mlist(thetalist)ddthetalist + c(thetalist,dthetalist) ... % + g(thetalist) + Jtr(thetalist)Ftip % Example Input (3 Link Robot): %{ clear;clc; thetalist = [0.1; 0.1; 0.1]; dthetalist = [0.1; 0.2; 0.3]; ddthetalist = [2; 1.5; 1]; g = [0; 0; -9.8]; Ftip = [1; 1; 1; 1; 1; 1]; M01 = [[1, 0, 0, 0]; [0, 1, 0, 0]; [0, 0, 1, 0.089159]; [0, 0, 0, 1]]; M12 = [[0, 0, 1, 0.28]; [0, 1, 0, 0.13585]; [-1, 0 ,0, 0]; [0, 0, 0, 1]]; M23 = [[1, 0, 0, 0]; [0, 1, 0, -0.1197]; [0, 0, 1, 0.395]; [0, 0, 0, 1]]; M34 = [[1, 0, 0, 0]; [0, 1, 0, 0]; [0, 0, 1, 0.14225]; [0, 0, 0, 1]]; G1 = diag([0.010267, 0.010267, 0.00666, 3.7, 3.7, 3.7]); G2 = diag([0.22689, 0.22689, 0.0151074, 8.393, 8.393, 8.393]); G3 = diag([0.0494433, 0.0494433, 0.004095, 2.275, 2.275, 2.275]); Glist = cat(3,G1,G2,G3); Mlist = cat(4,M01,M12,M23,M34); Slist = [[1; 0; 1; 0; 1; 0], ... [0; 1; 0; -0.089; 0; 0], ... [0; 1; 0; -0.089; 0; 0.425]]; taulist = InverseDynamics(thetalist,dthetalist,ddthetalist,g,Ftip, ... Mlist,Glist,Slist) %} % Output: % taulist = % 74.6962 % -33.0677 % -3.2306 n = size(thetalist,1); Mi = eye(4); Ai = zeros(6,n); AdTi = zeros(6,6,n + 1); Vi = zeros(6,n + 1); Vdi = zeros(6,n + 1); Vdi(4:6,1) = -g; AdTi(:,:,n + 1) = Adjoint(TransInv(Mlist(:,:,n + 1))); Fi = Ftip; taulist = zeros(n,1); for i=1:n Mi = Mi * Mlist(:,:,i); Ai(:,i) = Adjoint(TransInv(Mi)) * Slist(:,i); AdTi(:,:,i) = Adjoint(MatrixExp6(VecTose3(Ai(:,i) * -thetalist(i))) ... * TransInv(Mlist(:,:,i))); Vi(:,i + 1) = AdTi(:,:,i) * Vi(:,i) + Ai(:,i) * dthetalist(i); Vdi(:,i + 1) = AdTi(:,:,i) * Vdi(:,i) + Ai(:,i) * ddthetalist(i) ... + ad(Vi(:,i + 1)) * Ai(:,i) * dthetalist(i) ; end for i = n:-1:1 Fi = AdTi(:,:,i + 1)'* Fi + Glist(:,:,i) * Vdi(:,i + 1) ... - ad(Vi(:,i + 1))' * (Glist(:,:,i) * Vi(:,i + 1)); taulist(i) = Fi' * Ai(:,i); end end