40 lines
1.6 KiB
Mathematica
40 lines
1.6 KiB
Mathematica
|
|
%*** CHAPTER 8: DYNAMICS OF OPEN CHAINS ***
|
||
|
|
|
||
|
|
function c = VelQuadraticForces(thetalist,dthetalist,Mlist,Glist,Slist)
|
||
|
|
% Takes thetalist: A list of joint variables,
|
||
|
|
% dthetalist: A list of joint rates,
|
||
|
|
% Mlist: List of link frames i relative to i-1 at the home position,
|
||
|
|
% Glist: Spatial inertia matrices Gi of the links,
|
||
|
|
% Slist: Screw axes Si of the joints in a space frame.
|
||
|
|
% Returns c: The vector c(thetalist,dthetalist) of Coriolis and centripetal
|
||
|
|
% terms for a given thetalist and dthetalist.
|
||
|
|
% This function calls InverseDynamics with g = 0, Ftip = 0, and
|
||
|
|
% ddthetalist = 0.
|
||
|
|
% Example Input (3 Link Robot):
|
||
|
|
%{
|
||
|
|
clear;clc;
|
||
|
|
thetalist = [0.1; 0.1; 0.1];
|
||
|
|
dthetalist = [0.1; 0.2; 0.3];
|
||
|
|
M01 = [[1, 0, 0, 0]; [0, 1, 0, 0]; [0, 0, 1, 0.089159]; [0, 0, 0, 1]];
|
||
|
|
M12 = [[0, 0, 1, 0.28]; [0, 1, 0, 0.13585]; [-1, 0 ,0, 0]; [0, 0, 0, 1]];
|
||
|
|
M23 = [[1, 0, 0, 0]; [0, 1, 0, -0.1197]; [0, 0, 1, 0.395]; [0, 0, 0, 1]];
|
||
|
|
M34 = [[1, 0, 0, 0]; [0, 1, 0, 0]; [0, 0, 1, 0.14225]; [0, 0, 0, 1]];
|
||
|
|
G1 = diag([0.010267, 0.010267, 0.00666, 3.7, 3.7, 3.7]);
|
||
|
|
G2 = diag([0.22689, 0.22689, 0.0151074, 8.393, 8.393, 8.393]);
|
||
|
|
G3 = diag([0.0494433, 0.0494433, 0.004095, 2.275, 2.275, 2.275]);
|
||
|
|
Glist = cat(3,G1,G2,G3);
|
||
|
|
Mlist = cat(4,M01,M12,M23,M34);
|
||
|
|
Slist = [[1; 0; 1; 0; 1; 0], ...
|
||
|
|
[0; 1; 0; -0.089; 0; 0], ...
|
||
|
|
[0; 1; 0; -0.089; 0; 0.425]];
|
||
|
|
c = VelQuadraticForces(thetalist,dthetalist,Mlist,Glist,Slist)
|
||
|
|
%}
|
||
|
|
% Output:
|
||
|
|
% c =
|
||
|
|
% 0.2645
|
||
|
|
% -0.0551
|
||
|
|
% -0.0069
|
||
|
|
|
||
|
|
c = InverseDynamics(thetalist,dthetalist,zeros(size(thetalist,1),1), ...
|
||
|
|
[0; 0; 0],[0; 0; 0; 0; 0; 0],Mlist,Glist,Slist);
|
||
|
|
end
|