Modern_Robotics/code/MATLAB/SimulateControl.m

140 lines
5.8 KiB
Mathematica
Raw Normal View History

%*** CHAPTER 11: ROBOT CONTROL ***
function [taumat, thetamat] ...
= SimulateControl(thetalist,dthetalist,g,Ftipmat,Mlist,Glist, ...
Slist,thetamatd,dthetamatd,ddthetamatd, ...
gtilde,Mtildelist,Gtildelist,Kp,Ki,Kd,dt,intRes)
% Takes thetalist: n-vector of initial joint variables,
% dthetalist: n-vector of initial joint velocities,
% g: Actual gravity vector g,
% Ftipmat: An N x 6 matrix of spatial forces applied by the
% end-effector (If there are no tip forces, the user should
% input a zero and a zero matrix will be used),
% Mlist: Actual list of link frames i relative to i? at the home
% position,
% Glist: Actual spatial inertia matrices Gi of the links,
% Slist: Screw axes Si of the joints in a space frame,
% thetamatd: An Nxn matrix of desired joint variables from the
% reference trajectory,
% dthetamatd: An Nxn matrix of desired joint velocities,
% ddthetamatd: An Nxn matrix of desired joint accelerations,
% gtilde: The gravity vector based on the model of the actual robot
% (actual values given above),
% Mtildelist: The link frame locations based on the model of the
% actual robot (actual values given above),
% Gtildelist: The link spatial inertias based on the model of the
% actual robot (actual values given above),
% Kp: The feedback proportional gain (identical for each joint),
% Ki: The feedback integral gain (identical for each joint),
% Kd: The feedback derivative gain (identical for each joint),
% dt: The timestep between points on the reference trajectory.
% intRes: Integration resolution is the number of times integration
% (Euler) takes places between each time step. Must be an
% integer value greater than or equal to 1.
% Returns taumat: An Nxn matrix of the controller commanded joint
% forces/torques, where each row of n forces/torques
% corresponds to a single time instant,
% thetamat: An Nxn matrix of actual joint angles.
% The end of this function plots all the actual and desired joint angles.
% Example Usage
%{
clc;clear;
thetalist = [0.1; 0.1; 0.1];
dthetalist = [0.1; 0.2; 0.3];
%Initialize robot description (Example with 3 links)
g = [0; 0; -9.8];
M01 = [[1, 0, 0, 0]; [0, 1, 0, 0]; [0, 0, 1, 0.089159]; [0, 0, 0, 1]];
M12 = [[0, 0, 1, 0.28]; [0, 1, 0, 0.13585]; [-1, 0 ,0, 0]; [0, 0, 0, 1]];
M23 = [[1, 0, 0, 0]; [0, 1, 0, -0.1197]; [0, 0, 1, 0.395]; [0, 0, 0, 1]];
M34 = [[1, 0, 0, 0]; [0, 1, 0, 0]; [0, 0, 1, 0.14225]; [0, 0, 0, 1]];
G1 = diag([0.010267, 0.010267, 0.00666, 3.7, 3.7, 3.7]);
G2 = diag([0.22689, 0.22689, 0.0151074, 8.393, 8.393, 8.393]);
G3 = diag([0.0494433, 0.0494433, 0.004095, 2.275, 2.275, 2.275]);
Glist = cat(3,G1,G2,G3);
Mlist = cat(4,M01,M12,M23,M34);
Slist = [[1; 0; 1; 0; 1; 0], ...
[0; 1; 0; -0.089; 0; 0], ...
[0; 1; 0; -0.089; 0; 0.425]];
dt = 0.01;
%Create a trajectory to follow
thetaend =[pi / 2; pi; 1.5 * pi];
Tf = 1;
N = Tf / dt;
method = 5;
thetamatd = JointTrajectory(thetalist,thetaend,Tf,N,method);
dthetamatd = zeros(N,3);
ddthetamatd = zeros(N,3);
dt = Tf / (N-1);
for i = 1:N - 1
dthetamatd(i + 1,:) = (thetamatd(i + 1,:)-thetamatd(i,:)) / dt;
ddthetamatd(i + 1,:) = (dthetamatd(i + 1,:)-dthetamatd(i,:)) / dt;
end
%Possibly wrong robot description (Example with 3 links)
gtilde = [0.8; 0.2; -8.8];
Mhat01 = [[1, 0, 0, 0]; [0, 1, 0, 0]; [0, 0, 1, 0.1]; [0, 0, 0, 1]];
Mhat12 = [[0, 0, 1, 0.3]; [0, 1, 0, 0.2]; [-1, 0 ,0, 0]; [0, 0, 0, 1]];
Mhat23 = [[1, 0, 0, 0]; [0, 1, 0, -0.2]; [0, 0, 1, 0.4]; [0, 0, 0, 1]];
Mhat34 = [[1, 0, 0, 0]; [0, 1, 0, 0]; [0, 0, 1, 0.2]; [0, 0, 0, 1]];
Ghat1 = diag([0.1, 0.1, 0.1, 4, 4, 4]);
Ghat2 = diag([0.3, 0.3, 0.1, 9, 9, 9]);
Ghat3 = diag([0.1, 0.1, 0.1, 3, 3, 3]);
Gtildelist = cat(3,Ghat1,Ghat2,Ghat3);
Mtildelist = cat(4,Mhat01,Mhat12,Mhat23,Mhat34);
Ftipmat = ones(N,6);
Kp = 20;
Ki = 10;
Kd = 18;
intRes = 8;
[taumat, thetamat] ...
= SimulateControl(thetalist,dthetalist,g,Ftipmat,Mlist,Glist,Slist, ...
thetamatd,dthetamatd,ddthetamatd,gtilde,Mtildelist, ...
Gtildelist,Kp,Ki,Kd,dt,intRes);
%}
Ftipmat = Ftipmat';
thetamatd = thetamatd';
dthetamatd = dthetamatd';
ddthetamatd = ddthetamatd';
n = size(thetamatd,2);
taumat = zeros(size(thetamatd));
thetamat = zeros(size(thetamatd));
thetacurrent = thetalist;
dthetacurrent = dthetalist;
eint = zeros(size(thetamatd,1),1);
for i=1:n
taulist ...
= ComputedTorque(thetacurrent,dthetacurrent,eint,gtilde,Mtildelist, ...
Gtildelist,Slist,thetamatd(:,i),dthetamatd(:,i), ...
ddthetamatd(:,i),Kp,Ki,Kd);
for j=1:intRes
ddthetalist ...
= ForwardDynamics(thetacurrent,dthetacurrent,taulist,g, ...
Ftipmat(:,i),Mlist,Glist,Slist);
[thetacurrent, dthetacurrent] ...
= EulerStep(thetacurrent,dthetacurrent,ddthetalist,(dt/intRes));
end
taumat(:,i) = taulist;
thetamat(:,i) = thetacurrent;
eint = eint + (dt*(thetamatd(:,i) - thetacurrent));
end
%Output using matplotlib
links = size(thetamat,1);
leg = cell(1,2*links);
time=0:dt:((dt*n)-(dt));
timed=0:(dt):((dt*n)-(dt));
figure
hold on
for i=1:links
col = rand(1,3);
plot(time,(thetamat(i,:)'),'-','Color',col)
plot(timed,(thetamatd(i,:)'),'.','Color',col)
leg{(2*i)-1} = (strcat('ActualTheta', num2str(i)));
leg{(2*i)} = (strcat('DesiredTheta', num2str(i)));
end
title('Plot of Actual and Desired Joint Angles')
xlabel('Time')
ylabel('Joint Angles')
legend(leg, 'Location', 'NorthWest')
taumat = taumat';
thetamat = thetamat';
end