Modern_Robotics/packages/Matlab/mr/MatrixLog3.m

39 lines
1.0 KiB
Mathematica
Raw Normal View History

function so3mat = MatrixLog3(R)
% *** CHAPTER 3: RIGID-BODY MOTIONS ***
% Takes R (rotation matrix).
% Returns the corresponding so(3) representation of exponential
% coordinates.
% Example Input:
%
% clear; clc;
% R = [[0, 0, 1]; [1, 0, 0]; [0, 1, 0]];
% so3mat = MatrixLog3(R)
%
% Output:
% angvmat =
% 0 -1.2092 1.2092
% 1.2092 0 -1.2092
% -1.2092 1.2092 0
if NearZero(norm(R - eye(3)))
so3mat = zeros(3);
elseif NearZero(trace(R) + 1)
if ~NearZero(1 + R(3, 3))
omg = (1 / sqrt(2 * (1 + R(3, 3)))) * [R(1, 3); R(2, 3); 1 + R(3, 3)];
elseif ~NearZero(1 + R(2, 2))
omg = (1 / sqrt(2 * (1 + R(2, 2)))) * [R(1, 2); 1 + R(2, 2); R(3, 2)];
else
omg = (1 / sqrt(2 * (1 + R(1, 1)))) * [1 + R(1, 1); R(2, 1); R(3, 1)];
end
so3mat = VecToso3(pi * omg);
else
acosinput = (trace(R) - 1) / 2;
if acosinput > 1
acosinput = 1;
elseif acosinput < -1
acosinput = -1;
end
theta = acos(acosinput);
so3mat = theta * (1 / (2 * sin(theta))) * (R - R');
end
end