Modern_Robotics/packages/MATLAB/mr/InverseDynamics.m

74 lines
2.9 KiB
Mathematica
Raw Permalink Normal View History

function taulist = InverseDynamics(thetalist, dthetalist, ddthetalist, ...
g, Ftip, Mlist, Glist, Slist)
% *** CHAPTER 8: DYNAMICS OF OPEN CHAINS ***
% Takes thetalist: n-vector of joint variables,
% dthetalist: n-vector of joint rates,
% ddthetalist: n-vector of joint accelerations,
% g: Gravity vector g,
% Ftip: Spatial force applied by the end-effector expressed in frame
% {n+1},
% Mlist: List of link frames {i} relative to {i-1} at the home
% position,
% Glist: Spatial inertia matrices Gi of the links,
% Slist: Screw axes Si of the joints in a space frame, in the format
% of a matrix with the screw axes as the columns.
% Returns taulist: The n-vector of required joint forces/torques.
% This function uses forward-backward Newton-Euler iterations to solve the
% equation:
% taulist = Mlist(thetalist) * ddthetalist + c(thetalist, dthetalist) ...
% + g(thetalist) + Jtr(thetalist) * Ftip
% Example Input (3 Link Robot):
%
% clear; clc;
% thetalist = [0.1; 0.1; 0.1];
% dthetalist = [0.1; 0.2; 0.3];
% ddthetalist = [2; 1.5; 1];
% g = [0; 0; -9.8];
% Ftip = [1; 1; 1; 1; 1; 1];
% M01 = [[1, 0, 0, 0]; [0, 1, 0, 0]; [0, 0, 1, 0.089159]; [0, 0, 0, 1]];
% M12 = [[0, 0, 1, 0.28]; [0, 1, 0, 0.13585]; [-1, 0 ,0, 0]; [0, 0, 0, 1]];
% M23 = [[1, 0, 0, 0]; [0, 1, 0, -0.1197]; [0, 0, 1, 0.395]; [0, 0, 0, 1]];
% M34 = [[1, 0, 0, 0]; [0, 1, 0, 0]; [0, 0, 1, 0.14225]; [0, 0, 0, 1]];
% G1 = diag([0.010267, 0.010267, 0.00666, 3.7, 3.7, 3.7]);
% G2 = diag([0.22689, 0.22689, 0.0151074, 8.393, 8.393, 8.393]);
% G3 = diag([0.0494433, 0.0494433, 0.004095, 2.275, 2.275, 2.275]);
% Glist = cat(3, G1, G2, G3);
% Mlist = cat(3, M01, M12, M23, M34);
% Slist = [[1; 0; 1; 0; 1; 0], ...
% [0; 1; 0; -0.089; 0; 0], ...
% [0; 1; 0; -0.089; 0; 0.425]];
% taulist = InverseDynamics(thetalist, dthetalist, ddthetalist, g, ...
% Ftip, Mlist, Glist, Slist)
%
% Output:
% taulist =
% 74.6962
% -33.0677
% -3.2306
n = size(thetalist, 1);
Mi = eye(4);
Ai = zeros(6, n);
AdTi = zeros(6, 6, n + 1);
Vi = zeros(6, n + 1);
Vdi = zeros(6, n + 1);
Vdi(4: 6, 1) = -g;
AdTi(:, :, n + 1) = Adjoint(TransInv(Mlist(:, :, n + 1)));
Fi = Ftip;
taulist = zeros(n, 1);
for i=1: n
Mi = Mi * Mlist(:, :, i);
Ai(:, i) = Adjoint(TransInv(Mi)) * Slist(:, i);
AdTi(:, :, i) = Adjoint(MatrixExp6(VecTose3(Ai(:, i) ...
* -thetalist(i))) * TransInv(Mlist(:, :, i)));
Vi(:, i + 1) = AdTi(:, :, i) * Vi(:, i) + Ai(:, i) * dthetalist(i);
Vdi(:, i + 1) = AdTi(:, :, i) * Vdi(:, i) ...
+ Ai(:, i) * ddthetalist(i) ...
+ ad(Vi(:, i + 1)) * Ai(:, i) * dthetalist(i);
end
for i = n: -1: 1
Fi = AdTi(:, :, i + 1)' * Fi + Glist(:, :, i) * Vdi(:, i + 1) ...
- ad(Vi(:, i + 1))' * (Glist(:, :, i) * Vi(:, i + 1));
taulist(i) = Fi' * Ai(:, i);
end
end