function taumat ... = InverseDynamicsTrajectory(thetamat, dthetamat, ddthetamat, ... g, Ftipmat, Mlist, Glist, Slist) % *** CHAPTER 8: DYNAMICS OF OPEN CHAINS *** % Takes thetamat: An N x n matrix of robot joint variables, % dthetamat: An N x n matrix of robot joint velocities, % ddthetamat: An N x n matrix of robot joint accelerations, % g: Gravity vector g, % Ftipmat: An N x 6 matrix of spatial forces applied by the % end-effector (If there are no tip forces, the user should % input a zero and a zero matrix will be used), % Mlist: List of link frames i relative to i-1 at the home position, % Glist: Spatial inertia matrices Gi of the links, % Slist: Screw axes Si of the joints in a space frame, in the format % of a matrix with the screw axes as the columns. % Returns taumat: The N x n matrix of joint forces/torques for the % specified trajectory, where each of the N rows is the % vector of joint forces/torques at each time step. % This function uses InverseDynamics to calculate the joint forces/torques % required to move the serial chain along the given trajectory. % Example Inputs (3 Link Robot) % clc; clear; % %Create a trajectory to follow using functions from Chapter 9 % thetastart = [0; 0; 0]; % thetaend = [pi / 2; pi / 2; pi / 2]; % Tf = 3; % N= 1000; % method = 5 ; % traj = JointTrajectory(thetastart, thetaend, Tf, N, method); % thetamat = traj; % dthetamat = zeros(1000, 3); % ddthetamat = zeros(1000, 3); % dt = Tf / (N - 1); % for i = 1: N - 1 % dthetamat(i + 1, :) = (thetamat(i + 1, :) - thetamat(i, :)) / dt; % ddthetamat(i + 1, :) = (dthetamat(i + 1, :) - dthetamat(i, :)) / dt; % end % %Initialise robot descripstion (Example with 3 links) % g = [0; 0; -9.8]; % Ftipmat = ones(N, 6); % M01 = [[1, 0, 0, 0]; [0, 1, 0, 0]; [0, 0, 1, 0.089159]; [0, 0, 0, 1]]; % M12 = [[0, 0, 1, 0.28]; [0, 1, 0, 0.13585]; [-1, 0 ,0, 0]; [0, 0, 0, 1]]; % M23 = [[1, 0, 0, 0]; [0, 1, 0, -0.1197]; [0, 0, 1, 0.395]; [0, 0, 0, 1]]; % M34 = [[1, 0, 0, 0]; [0, 1, 0, 0]; [0, 0, 1, 0.14225]; [0, 0, 0, 1]]; % G1 = diag([0.010267, 0.010267, 0.00666, 3.7, 3.7, 3.7]); % G2 = diag([0.22689, 0.22689, 0.0151074, 8.393, 8.393, 8.393]); % G3 = diag([0.0494433, 0.0494433, 0.004095, 2.275, 2.275, 2.275]); % Glist = cat(3, G1, G2, G3); % Mlist = cat(3, M01, M12, M23, M34); % Slist = [[1; 0; 1; 0; 1; 0], ... % [0; 1; 0; -0.089; 0; 0], ... % [0; 1; 0; -0.089; 0; 0.425]]; % taumat = InverseDynamicsTrajectory(thetamat, dthetamat, ddthetamat, ... % g, Ftipmat, Mlist, Glist, Slist); % %Output using matplotlib to plot the joint forces/torques % time=0: dt: Tf; % plot(time, taumat(:, 1), 'b') % hold on % plot(time, taumat(:, 2), 'g') % plot(time, taumat(:, 3), 'r') % title('Plot for Torque Trajectories') % xlabel('Time') % ylabel('Torque') % legend('Tau1', 'Tau2', 'Tau3') % thetamat = thetamat'; dthetamat = dthetamat'; ddthetamat = ddthetamat'; Ftipmat = Ftipmat'; taumat = thetamat; for i = 1: size(thetamat, 2) taumat(:, i) ... = InverseDynamics(thetamat(:, i), dthetamat(:, i), ddthetamat(:, i), ... g, Ftipmat(:, i), Mlist, Glist, Slist); end taumat = taumat'; end