feature/R1000-identification #2
|
|
@ -8,6 +8,8 @@ opt.debug = false;
|
||||||
opt.robotName = 'R1000_DVT';
|
opt.robotName = 'R1000_DVT';
|
||||||
opt.reGenerate = false;
|
opt.reGenerate = false;
|
||||||
opt.Isreal = true;
|
opt.Isreal = true;
|
||||||
|
opt.isJointTorqueSensor = false;
|
||||||
|
opt.isSixAxisFTSensor = true;
|
||||||
|
|
||||||
theta = zeros(9,1);
|
theta = zeros(9,1);
|
||||||
dtheta = zeros(9,1);
|
dtheta = zeros(9,1);
|
||||||
|
|
|
||||||
|
|
@ -14,7 +14,7 @@ q2d_max = 6*pi*ones(ndof,1);
|
||||||
% Find relation between independent columns and dependent columns
|
% Find relation between independent columns and dependent columns
|
||||||
% -----------------------------------------------------------------------
|
% -----------------------------------------------------------------------
|
||||||
% Get observation matrix of identifiable paramters
|
% Get observation matrix of identifiable paramters
|
||||||
W = []; isSixAxisFTSensor =1; isJointTorqueSensor =0;
|
W = []; isSixAxisFTSensor =opt.isSixAxisFTSensor; isJointTorqueSensor =opt.isJointTorqueSensor;
|
||||||
for i = 1:25
|
for i = 1:25
|
||||||
q_rnd = q_min + (q_max - q_min).*rand(ndof,1);
|
q_rnd = q_min + (q_max - q_min).*rand(ndof,1);
|
||||||
qd_rnd = -qd_max + 2*qd_max.*rand(ndof,1);
|
qd_rnd = -qd_max + 2*qd_max.*rand(ndof,1);
|
||||||
|
|
@ -26,11 +26,15 @@ for i = 1:25
|
||||||
standard_regressor_func = sprintf('standard_regressor_%s',opt.robotName);
|
standard_regressor_func = sprintf('standard_regressor_%s',opt.robotName);
|
||||||
Y = feval(standard_regressor_func, q_rnd,qd_rnd,q2d_rnd);
|
Y = feval(standard_regressor_func, q_rnd,qd_rnd,q2d_rnd);
|
||||||
elseif isSixAxisFTSensor
|
elseif isSixAxisFTSensor
|
||||||
|
% regressor_func = sprintf('regressor_%s',opt.robotName);
|
||||||
|
% Y = feval(regressor_func, q_rnd,qd_rnd,q2d_rnd);
|
||||||
|
% joint_idex = ndof-2;
|
||||||
|
% Y = Y(6*(joint_idex-1)+1:6*(joint_idex),:);
|
||||||
|
% FIXME hack here
|
||||||
standard_regressor_func = sprintf('standard_regressor_%s',opt.robotName);
|
standard_regressor_func = sprintf('standard_regressor_%s',opt.robotName);
|
||||||
Y = feval(standard_regressor_func, q_rnd,qd_rnd,q2d_rnd);
|
Y = feval(standard_regressor_func, q_rnd,qd_rnd,q2d_rnd);
|
||||||
% FIXME hack here
|
|
||||||
Zeros_ = zeros(size(Y));
|
Zeros_ = zeros(size(Y));
|
||||||
Zeros_(ndof-3,:) = Y(ndof-3,:);
|
Zeros_(ndof-2,:) = Y(ndof-2,:);
|
||||||
Y = Zeros_;
|
Y = Zeros_;
|
||||||
end
|
end
|
||||||
W = vertcat(W,Y);
|
W = vertcat(W,Y);
|
||||||
|
|
|
||||||
Binary file not shown.
Loading…
Reference in New Issue