update MLS

This commit is contained in:
cosmic_power 2024-12-11 20:14:53 +08:00
parent d7d355a51f
commit b20d613462
4 changed files with 8 additions and 152 deletions

View File

@ -1,5 +0,0 @@
function E=E1gen(A,i,j)
n=size(A); %A
m=min(n); %
E=eye(m); %
E(i,i)=0; E(j,j)=0; E(i,j)=1; E(j,i)=1;

View File

@ -1,110 +0,0 @@
function robot = estimate_dyn_MLS(robot,opt)
% -------------------------------------------------------------------
% Get datas
% ------------------------------------------------------------------------
get_GCTraj_R1000_EVT;
% -------------------------------------------------------------------
% Generate Regressors based on data
% ------------------------------------------------------------------------
drvGains = [];
baseQR = robot.baseQR;
for i = 1:1:robot.ndof
q = idntfcnTrjctry(i).q;
qd = idntfcnTrjctry(i).qd;
qdd = idntfcnTrjctry(i).qdd;
[nRow,nCol] = size(idntfcnTrjctry(i).qd);
Wb = []; Tau = [];
for j = 1:nRow/robot.ndof
for k = 1:nCol
if opt.isJointTorqueSensor
base_regressor_func = sprintf('base_regressor_%s',opt.robotName);
Yb = feval(base_regressor_func, q(robot.ndof*(j-1)+1:robot.ndof*j,k),...
qd(robot.ndof*(j-1)+1:robot.ndof*j,k),...
qdd(robot.ndof*(j-1)+1:robot.ndof*j,k),baseQR);
Yb = Yb(i,:);
Wb = vertcat(Wb, Yb);
Tau = vertcat(Tau, idntfcnTrjctry(i).tau(j,k));
end
end
end
observationMatrix(i).Wb = Wb;
observationMatrix(i).Tau = Tau;
observationMatrix(i).rank = robot.baseQR.rank(i);
end
% ---------------------------------------------------------------------
% Estimate parameters
% ---------------------------------------------------------------------
sol = struct;
for i = 9:-1:1
Wb = observationMatrix(i).Wb;
Tau = observationMatrix(i).Tau;
% [nRow,nCol] = size(Wb);
if i == 9
pib_OLS=pinv(Wb(:,15-observationMatrix(i).rank+1"))*Tau;
pib_MLS = [];
elseif i > 1
pib_OLS=pinv(Wb(:,15-observationMatrix(i).rank+1:15-observationMatrix(i+1).rank))*...
(-Wb(:,15-observationMatrix(i+1).rank+1)*pib_MLS+Tau);
else
break;
end
pifrctn_OLS = 0;
pib_MLS = [pib_OLS;pib_MLS];
end
a=1
% method = 'OLS';
% if strcmp(method, 'OLS')
% % Usual least squares
% [sol.pi_b, sol.pi_fr] = ordinaryLeastSquareEstimation(observationMatrix);
% elseif strcmp(method, 'PC-OLS')
% % Physically consistent OLS using SDP optimization
% [sol.pi_b, sol.pi_fr, sol.pi_s] = physicallyConsistentEstimation(Tau, Wb, baseQR);
% else
% error("Chosen method for dynamic parameter estimation does not exist");
% end
% robot.sol = sol;
% % Local unctions
% function observationMatrix = buildObservationMatrices(idntfcnTrjctry, baseQR, drvGains,opt)
% for i = 1:1:robot.ndof
% [nRow,nCol] = size(idntfcnTrjctry(i).qd);
% Wb = []; Tau = [];
% for j = 1:nRow/robot.ndof
% for k = 1:nCol
% if opt.isJointTorqueSensor
% base_regressor_func = sprintf('base_regressor_%s',opt.robotName);
% Yb = feval(base_regressor_func, q(robot.ndof*(j-1)+1:robot.ndof*j,k),...
% qd(robot.ndof*(j-1)+1:robot.ndof*j,k),...
% qdd(robot.ndof*(j-1)+1:robot.ndof*j,k),baseQR);
% Yb = Yb(i,:);
% Wb = vertcat(Wb, Yb);
% Tau = vertcat(Tau, idntfcnTrjctry(i).tau(j,k));
% end
% end
% end
% observationMatrix(i).Wb = Wb;
% observationMatrix(i).Tau = Tau;
% end
% end
%
%
% function [pib_OLS, pifrctn_OLS] = ordinaryLeastSquareEstimation(observationMatrix)
% % Function perfroms ordinary least squares estimation of parameters
% % pi_OLS = (Wb'*Wb)\(Wb'*Tau);
% % pib_OLS = pi_OLS(1:40); % variables for base paramters
% % pifrctn_OLS = pi_OLS(41:end);
% for i = 9:-1:1
% Wb = observationMatrix(i).Wb;
% Tau = observationMatrix(i).Tau;
% pib_OLS(i)=pinv(Wb)*Tau;
% pifrctn_OLS = 0;
% end
% end
% function [pib_OLS, pifrctn_OLS] = MultiLeastSquareEstimation(idntfcnTrjctry, Tau, Wb)
% % Function perfroms Multi step ordinary least squares estimation of parameters
%
% pib_OLS=pinv(Wb)*Tau;
% pifrctn_OLS = 0;
% end
end

View File

@ -37,23 +37,24 @@ end
% Estimate parameters
% ---------------------------------------------------------------------
sol = struct;
for i = 9:-1:1
for i = robot.ndof:-1:1
Wb = observationMatrix(i).Wb;
Tau = observationMatrix(i).Tau;
% [nRow,nCol] = size(Wb);
if i == 9
pib_OLS=pinv(Wb(:,15-observationMatrix(i).rank+1:end))*Tau;
if i == robot.ndof
pib_OLS=pinv(Wb(:,baseQR.numberOfBaseParameters-observationMatrix(i).rank+1:end))*Tau;
pib_MLS = [];
elseif i > 1
pib_OLS=pinv(Wb(:,15-observationMatrix(i).rank+1:15-observationMatrix(i+1).rank))*...
(-Wb(:,15-observationMatrix(i+1).rank+1:end)*pib_MLS+Tau);
pib_OLS=pinv(Wb(:,baseQR.numberOfBaseParameters-observationMatrix(i).rank+1:...
baseQR.numberOfBaseParameters-observationMatrix(i+1).rank))*...
(-Wb(:,baseQR.numberOfBaseParameters-observationMatrix(i+1).rank+1:end)*pib_MLS+Tau);
else
break;
end
pifrctn_OLS = 0;
pib_MLS = [pib_OLS;pib_MLS];
end
a=1
sol.pib_MLS = pib_MLS;
robot.sol = sol;
% method = 'OLS';
% if strcmp(method, 'OLS')
% % Usual least squares

View File

@ -1,30 +0,0 @@
time = 0:0.01:1;
f=1;
q_J = sin(2*pi*f*time);
qd_J = (2*pi*f)*cos(2*pi*f*time);
qdd_J = -(2*pi*f)^2*sin(2*pi*f*time);
zero_ = zeros(1,length(q_J));
% thetalist = [zero_;zero_;zero_;zero_;zero_;zero_;zero_;zero_;zero_]';
thetalist = zeros(N,1);
Mlist_CG = robot.kine.Mlist_CG;
Slist=robot.slist;
% Get general mass matrix
Glist=[];
for i = 1:N
Gb= [link_inertia(:,:,i),zeros(3,3);zeros(3,3),link_mass(i)*diag([1,1,1])];
Glist = cat(3, Glist, Gb);
end
gravity = [0;0;-9.806];
for i = 1:N
gravityForces(:,i) = Glist(:,:,i)*[zeros(3,1);gravity];
Jacoblist(:,:,i) = JacobianSpace(Slist(:,1:i),thetalist(1:i));
end
for i = N:-1:1
gravityTorques(i) = transpose(Jacoblist(:,:,i))*gravityForces(:,i);
end