fixing regressor
This commit is contained in:
parent
297d5924b2
commit
31c83f5073
|
|
@ -6,19 +6,17 @@ opt.Vel_method = 'Direct';
|
|||
opt.LD_method = 'Direct';
|
||||
opt.debug = true;
|
||||
opt.robotName = 'R1000';
|
||||
|
||||
opt.reGenerate = false;
|
||||
opt.Isreal = false;
|
||||
|
||||
robot = get_robot_R1000(file,opt);
|
||||
% robot.theta = [1,1,0];
|
||||
|
||||
|
||||
robot = get_Kinematics(robot, opt);
|
||||
|
||||
% R1000_Dynamics_num;
|
||||
% R1000_Dynamics;
|
||||
% opt.Isreal = false;
|
||||
% getGravityForce;
|
||||
robot = get_velocity(robot, opt);
|
||||
robot = get_regressor(robot,opt);
|
||||
% symbol matched
|
||||
% verify_regressor
|
||||
% verify_regressor_R1000;
|
||||
% robot = get_baseParams(robot, opt);
|
||||
|
|
|
|||
|
|
@ -12,7 +12,7 @@ link_mass = robot.m;
|
|||
com_pos = robot.com;
|
||||
link_inertia = robot.I;
|
||||
|
||||
thetalist = [zero_;q_J;zero_;zero_;zero_;zero_;zero_;zero_;zero_]';
|
||||
thetalist = [zero_;zero_;zero_;zero_;zero_;zero_;zero_;zero_;zero_]';
|
||||
dthetalist = [zero_;zero_;zero_;zero_;zero_;zero_;zero_;zero_;zero_]';
|
||||
ddthetalist = [zero_;zero_;zero_;zero_;zero_;zero_;zero_;zero_;zero_]';
|
||||
|
||||
|
|
|
|||
File diff suppressed because it is too large
Load Diff
|
|
@ -0,0 +1,30 @@
|
|||
time = 0:0.01:1;
|
||||
f=1;
|
||||
q_J = sin(2*pi*f*time);
|
||||
qd_J = (2*pi*f)*cos(2*pi*f*time);
|
||||
qdd_J = -(2*pi*f)^2*sin(2*pi*f*time);
|
||||
zero_ = zeros(1,length(q_J));
|
||||
|
||||
|
||||
% thetalist = [zero_;zero_;zero_;zero_;zero_;zero_;zero_;zero_;zero_]';
|
||||
thetalist = zeros(N,1);
|
||||
|
||||
Mlist_CG = robot.kine.Mlist_CG;
|
||||
Slist=robot.slist;
|
||||
|
||||
% Get general mass matrix
|
||||
Glist=[];
|
||||
for i = 1:N
|
||||
Gb= [link_inertia(:,:,i),zeros(3,3);zeros(3,3),link_mass(i)*diag([1,1,1])];
|
||||
Glist = cat(3, Glist, Gb);
|
||||
end
|
||||
gravity = [0;0;-9.806];
|
||||
|
||||
for i = 1:N
|
||||
gravityForces(:,i) = Glist(:,:,i)*[zeros(3,1);gravity];
|
||||
Jacoblist(:,:,i) = JacobianSpace(Slist(:,1:i),thetalist(1:i));
|
||||
end
|
||||
|
||||
for i = N:-1:1
|
||||
gravityTorques(i) = transpose(Jacoblist(:,:,i))*gravityForces(:,i);
|
||||
end
|
||||
|
|
@ -0,0 +1,41 @@
|
|||
%% R1000
|
||||
N=9;
|
||||
time = 0:0.01:1;
|
||||
f=1;
|
||||
q_J = sin(2*pi*f*time);
|
||||
qd_J = (2*pi*f)*cos(2*pi*f*time);
|
||||
qdd_J = -(2*pi*f)^2*sin(2*pi*f*time);
|
||||
zero_ = zeros(1,length(q_J));
|
||||
|
||||
|
||||
% thetalist = [zero_;zero_;zero_;zero_;zero_;zero_;zero_;zero_;zero_]';
|
||||
thetalist = zeros(N,1);
|
||||
|
||||
Mlist_CG = robot.kine.Mlist_CG;
|
||||
Slist=robot.slist;
|
||||
|
||||
% Dynamics parameters
|
||||
link_mass = robot.m;
|
||||
com_pos = robot.com;
|
||||
link_inertia = robot.I;
|
||||
% Get general mass matrix
|
||||
Glist=[];
|
||||
for i = 1:N
|
||||
Gb= [link_inertia(:,:,i),zeros(3,3);zeros(3,3),link_mass(i)*diag([1,1,1])];
|
||||
Glist = cat(3, Glist, Gb);
|
||||
end
|
||||
|
||||
gravity = [0;0;-9.806];
|
||||
gravityForcelist = zeros(6,N);
|
||||
for i = 1:N
|
||||
gravityForcelist(:,i) = Glist(:,:,i)*[zeros(3,1);gravity];
|
||||
end
|
||||
|
||||
% JacobianMatrix = zeros(6*N,6*N);
|
||||
% for i = 1:N
|
||||
% for j = 1:N
|
||||
% JacobianMatrix(1+6*(i-1):6*i,1+6*(j-1):6*j) = JacobianSpace(Slist(:,i:j),thetalist(i:j));
|
||||
% end
|
||||
% end
|
||||
JacobianMatrix = JacobianSpace(Slist,thetalist);
|
||||
gravityTorques = transpose(JacobianMatrix)*gravityForcelist;
|
||||
|
|
@ -71,8 +71,13 @@ switch opt.LD_method
|
|||
sprintf('size of K=%dx%d.',size(robot.regressor.K));
|
||||
end
|
||||
end
|
||||
% matlabFunction(robot.regressor.K,'File',sprintf('autogen/standard_regressor_%s',opt.robotName),...
|
||||
% 'Vars',{q_sym,qd_sym,q2d_sym});
|
||||
tic
|
||||
matlabFunction(robot.regressor.K,'File',sprintf('autogen/standard_regressor_%s',opt.robotName),...
|
||||
'Vars',{q_sym,qd_sym,q2d_sym});
|
||||
'Vars',{q_sym});
|
||||
compileTime = toc;
|
||||
fprintf("The total compile time was: = %d minutes, %d seconds\n", floor(compileTime/60), ceil(rem(compileTime,60)));
|
||||
% matlabFunction(Y_f,'File','autogen/standard_regressor_Two_bar',...
|
||||
% 'Vars',{q_sym,qd_sym,q2d_sym});
|
||||
case 'Lagrange'
|
||||
|
|
|
|||
|
|
@ -224,5 +224,5 @@ switch opt.robot_def
|
|||
return
|
||||
end
|
||||
%Gravity
|
||||
gravity = [0;0;9.8];
|
||||
gravity = [0;0;-9.806];
|
||||
robot.gravity = gravity;
|
||||
|
|
@ -2,19 +2,27 @@ function robot = get_velocity(robot, opt)
|
|||
switch opt.KM_method
|
||||
case 'SCREW'
|
||||
% init q
|
||||
% q = robot.theta;
|
||||
% qd = robot.dtheta;
|
||||
% qdd = robot.ddtheta;
|
||||
% [V,Vd,~,~,~] = InverseDynamics_debug(thetalist, dthetalist, ddthetalist, ...
|
||||
% g, Ftip,Mlist, Glist, Slist);
|
||||
% robot.vel.w = w;
|
||||
% robot.vel.v = v;
|
||||
% robot.vel.dw = dw;
|
||||
% robot.vel.dv = dv;
|
||||
robot.vel.w = zeros(3,robot.ndof);
|
||||
robot.vel.v = zeros(3,robot.ndof);
|
||||
robot.vel.dw = zeros(3,robot.ndof);
|
||||
robot.vel.dv = zeros(3,robot.ndof);
|
||||
q = robot.theta;
|
||||
qd = robot.dtheta;
|
||||
qdd = robot.ddtheta;
|
||||
Mlist_CG = robot.kine.Mlist_CG;
|
||||
% Get general mass matrix
|
||||
link_mass = robot.m;
|
||||
com_pos = robot.com;
|
||||
link_inertia = robot.I;
|
||||
Slist=robot.slist;
|
||||
Glist=[];
|
||||
for i = 1:robot.ndof
|
||||
Gb= [link_inertia(:,:,i),zeros(3,3);zeros(3,3),link_mass(i)*diag([1,1,1])];
|
||||
Glist = cat(3, Glist, Gb);
|
||||
end
|
||||
[V,Vd,~,~,~] = InverseDynamics_sym(q, qd, qdd, ...
|
||||
robot.gravity, [0;0;0;0;0;0],Mlist_CG, Glist, Slist);
|
||||
% FIXME: twist is not equal to velocity
|
||||
robot.vel.w = V(1:3,:);
|
||||
robot.vel.v = V(4:6,:);
|
||||
robot.vel.dw = Vd(1:3,:);
|
||||
robot.vel.dv = Vd(4:6,:);
|
||||
case 'SDH'
|
||||
case 'MDH'
|
||||
switch opt.Vel_method
|
||||
|
|
|
|||
|
|
@ -0,0 +1,10 @@
|
|||
function out = inertiaMatrix2Tensor(I)
|
||||
% -----------------------------------------------------------------------
|
||||
% This function conerts ineria matrix of the link to vector in
|
||||
% 'Gautier-Khalil' notation (because it is used in all their papers)
|
||||
% Input:
|
||||
% I - 3x3 inertia matrix of the link
|
||||
% Output:
|
||||
% out - [Ixx Ixy Ixz Iyy Iyz Izz]
|
||||
% -----------------------------------------------------------------------
|
||||
out = [I(1,1) I(1,2) I(1,3) I(2,2) I(2,3) I(3,3)]';
|
||||
|
|
@ -0,0 +1,87 @@
|
|||
% function robot = verify_regressor(robot, opt)
|
||||
% verify: If full regressor dynamics is the same as basic dynamics
|
||||
ndof = robot.ndof;
|
||||
% Dynamics parameters
|
||||
link_mass = robot.m;
|
||||
com_pos = robot.com;
|
||||
link_inertia = robot.I;
|
||||
|
||||
q_sym = sym('q%d',[ndof+1,1],'real');
|
||||
qd_sym = sym('qd%d',[ndof+1,1],'real');
|
||||
q2d_sym = sym('qdd%d',[ndof+1,1],'real');
|
||||
for i =1:ndof
|
||||
pi(:,i)=[link_mass(i);link_mass(i)*robot.com_pos_R1;];
|
||||
end
|
||||
% pi2=zeros([10,1]);
|
||||
pi=[pi1;pi2];
|
||||
regressor = standard_regressor_Two_bar(q_sym,qd_sym,q2d_sym);
|
||||
tau=regressor*pi;
|
||||
%% Two-bar
|
||||
N=2;
|
||||
thetalist = q_sym(1:N);
|
||||
dthetalist = qd_sym(1:N);
|
||||
ddthetalist = q2d_sym(1:N);
|
||||
|
||||
Gb= [diag([1,1,1]),zeros(3,3);
|
||||
zeros(3,3),diag([1,1,1])];
|
||||
Glist = cat(3, Gb, Gb);
|
||||
% Glist = cat(3, Gb, zeros([6,6]));
|
||||
M01 = [[1, 0, 0, 1/2]; [0, 1, 0, 0]; [0, 0, 1, 0]; [0, 0, 0, 1]];
|
||||
M12 = [[1, 0, 0, 1]; [0, 1, 0, 0]; [0, 0, 1, 0]; [0, 0, 0, 1]];
|
||||
M23 = [[1, 0, 0, 1/2]; [0, 1, 0, 0]; [0, 0, 1, 0]; [0, 0, 0, 1]];
|
||||
Mlist = cat(3, M01, M12, M23);
|
||||
Slist=[[0;0;1;0;0;0],...
|
||||
[0;0;1;0;-1;0]];
|
||||
Adgab_mat = sym(zeros(6,6,N+1));
|
||||
Fmat=sym(zeros(N,6));
|
||||
F1=sym(zeros(N,6));
|
||||
V1=sym(zeros(6,N+1));
|
||||
G=sym(zeros(4,4,N));
|
||||
T=sym(zeros(4,4,N));
|
||||
Vlinear=sym(zeros(3,3));
|
||||
Vd1=sym(zeros(6,N+1));
|
||||
Gb= [diag([1,1,1]),zeros(3,3);
|
||||
zeros(3,3),diag([1,1,1])];
|
||||
J=sym(zeros(6,N));
|
||||
exf=[0;0;0;0;0;0];
|
||||
|
||||
[V1,Vd1,Adgab_mat,Fmat,tau_mat] ...
|
||||
= InverseDynamics_sym(thetalist, dthetalist, ddthetalist, ...
|
||||
[0;0;0], exf, Mlist, Glist, Slist);
|
||||
G = FKinSpaceExpand_Sym(Mlist, Slist, thetalist);
|
||||
M01 = [[1, 0, 0, 0]; [0, 1, 0, 0]; [0, 0, 1, 0]; [0, 0, 0, 1]];
|
||||
M12 = [[1, 0, 0, 1]; [0, 1, 0, 0]; [0, 0, 1, 0]; [0, 0, 0, 1]];
|
||||
M23 = [[1, 0, 0, 1]; [0, 1, 0, 0]; [0, 0, 1, 0]; [0, 0, 0, 1]];
|
||||
Mlist = cat(3, M01, M12, M23);
|
||||
T=FKinSpaceExpand_Sym(Mlist, Slist, thetalist);
|
||||
F_Simpack = getSimpackF_Sym(G,T,Mlist,Fmat);
|
||||
% Use Body Twist cal linear vel, but can't cal the end frame vel
|
||||
[V2] = InverseDynamics_sym(thetalist, dthetalist, ddthetalist, ...
|
||||
[0;0;0], exf, Mlist, Glist, Slist);
|
||||
j=1;
|
||||
Vlinear(:, j+1) = BodyVelToLinearVel(V2(:,j+1),G(:,:,j)*M12);
|
||||
j=2;
|
||||
Vlinear(:, j+1) = BodyVelToLinearVel(V2(:,j+1),G(:,:,j)*M23);
|
||||
%% Check if screw method is equal to regressor
|
||||
isequal(simplify(tau),simplify(tau_mat))
|
||||
%% Numerical
|
||||
clear pi;
|
||||
ndof = robot.ndof;
|
||||
time = 0:0.01:2;
|
||||
f=1;
|
||||
q_J = sin(2*pi*f*time);
|
||||
qd_J = (2*pi*f)*cos(2*pi*f*time);
|
||||
qdd_J = -(2*pi*f)^2*sin(2*pi*f*time);
|
||||
q=[q_J;-q_J];
|
||||
qd=[qd_J; -qd_J];
|
||||
qdd=[qdd_J; -qdd_J];
|
||||
g = [0; 0; -9.8];
|
||||
robot_pi1=[1;1/2;0;0;1+1/4;0;0;1+1/4;0;1+1/4];
|
||||
robot_pi2=[1;1/2;0;0;1+1/4;0;0;1+1/4;0;1+1/4];
|
||||
% pi2=zeros([10,1]);
|
||||
robot_pi=[robot_pi1;robot_pi2];
|
||||
tau = zeros([2,100]);
|
||||
for i = 1:length(q_J)
|
||||
regressor = standard_regressor_Two_bar(q(:,i),qd(:,i),qdd(:,i));
|
||||
tau(:,i)=regressor*robot_pi;
|
||||
end
|
||||
|
|
@ -1,81 +1,40 @@
|
|||
% function robot = verify_regressor(robot, opt)
|
||||
% verify: If full regressor dynamics is the same as basic dynamics
|
||||
ndof = robot.ndof;
|
||||
q_sym = sym('q%d',[ndof+1,1],'real');
|
||||
qd_sym = sym('qd%d',[ndof+1,1],'real');
|
||||
q2d_sym = sym('qdd%d',[ndof+1,1],'real');
|
||||
pi1=[1;1/2;0;0;1+1/4;0;0;1+1/4;0;1+1/4];
|
||||
pi2=[1;1/2;0;0;1+1/4;0;0;1+1/4;0;1+1/4];
|
||||
% pi2=zeros([10,1]);
|
||||
pi=[pi1;pi2];
|
||||
regressor = standard_regressor_Two_bar(q_sym,qd_sym,q2d_sym);
|
||||
tau=regressor*pi;
|
||||
%% Two-bar
|
||||
N=2;
|
||||
thetalist = q_sym(1:N);
|
||||
dthetalist = qd_sym(1:N);
|
||||
ddthetalist = q2d_sym(1:N);
|
||||
% Dynamics parameters
|
||||
link_mass = robot.m;
|
||||
com_pos = robot.com;
|
||||
link_inertia = robot.I;
|
||||
|
||||
Gb= [diag([1,1,1]),zeros(3,3);
|
||||
zeros(3,3),diag([1,1,1])];
|
||||
Glist = cat(3, Gb, Gb);
|
||||
% Glist = cat(3, Gb, zeros([6,6]));
|
||||
M01 = [[1, 0, 0, 1/2]; [0, 1, 0, 0]; [0, 0, 1, 0]; [0, 0, 0, 1]];
|
||||
M12 = [[1, 0, 0, 1]; [0, 1, 0, 0]; [0, 0, 1, 0]; [0, 0, 0, 1]];
|
||||
M23 = [[1, 0, 0, 1/2]; [0, 1, 0, 0]; [0, 0, 1, 0]; [0, 0, 0, 1]];
|
||||
Mlist = cat(3, M01, M12, M23);
|
||||
Slist=[[0;0;1;0;0;0],...
|
||||
[0;0;1;0;-1;0]];
|
||||
Adgab_mat = sym(zeros(6,6,N+1));
|
||||
Fmat=sym(zeros(N,6));
|
||||
F1=sym(zeros(N,6));
|
||||
V1=sym(zeros(6,N+1));
|
||||
G=sym(zeros(4,4,N));
|
||||
T=sym(zeros(4,4,N));
|
||||
Vlinear=sym(zeros(3,3));
|
||||
Vd1=sym(zeros(6,N+1));
|
||||
Gb= [diag([1,1,1]),zeros(3,3);
|
||||
zeros(3,3),diag([1,1,1])];
|
||||
J=sym(zeros(6,N));
|
||||
exf=[0;0;0;0;0;0];
|
||||
|
||||
[V1,Vd1,Adgab_mat,Fmat,tau_mat] ...
|
||||
= InverseDynamics_sym(thetalist, dthetalist, ddthetalist, ...
|
||||
[0;0;0], exf, Mlist, Glist, Slist);
|
||||
G = FKinSpaceExpand_Sym(Mlist, Slist, thetalist);
|
||||
M01 = [[1, 0, 0, 0]; [0, 1, 0, 0]; [0, 0, 1, 0]; [0, 0, 0, 1]];
|
||||
M12 = [[1, 0, 0, 1]; [0, 1, 0, 0]; [0, 0, 1, 0]; [0, 0, 0, 1]];
|
||||
M23 = [[1, 0, 0, 1]; [0, 1, 0, 0]; [0, 0, 1, 0]; [0, 0, 0, 1]];
|
||||
Mlist = cat(3, M01, M12, M23);
|
||||
T=FKinSpaceExpand_Sym(Mlist, Slist, thetalist);
|
||||
F_Simpack = getSimpackF_Sym(G,T,Mlist,Fmat);
|
||||
% Use Body Twist cal linear vel, but can't cal the end frame vel
|
||||
[V2] = InverseDynamics_sym(thetalist, dthetalist, ddthetalist, ...
|
||||
[0;0;0], exf, Mlist, Glist, Slist);
|
||||
j=1;
|
||||
Vlinear(:, j+1) = BodyVelToLinearVel(V2(:,j+1),G(:,:,j)*M12);
|
||||
j=2;
|
||||
Vlinear(:, j+1) = BodyVelToLinearVel(V2(:,j+1),G(:,:,j)*M23);
|
||||
q_sym = sym('q%d',[ndof,1],'real');
|
||||
% for i =1:ndof
|
||||
% robot_pi(:,i)=[link_mass(i);link_mass(i)*robot.com_pos_R1;inertiaMatrix2Tensor(link_inertia(:,:,i))];
|
||||
% end
|
||||
% regressor = standard_regressor_R1000(q_sym);
|
||||
robot_pi_vector = reshape(robot.pi,[10*ndof,1]);
|
||||
tau=robot.regressor.K*robot_pi_vector;
|
||||
%% R1000
|
||||
tau_mat = standard_dynamics_R1000(q_sym);
|
||||
%% Check if screw method is equal to regressor
|
||||
isequal(simplify(tau),simplify(tau_mat))
|
||||
%% Numerical
|
||||
clear pi;
|
||||
ndof = robot.ndof;
|
||||
time = 0:0.01:2;
|
||||
f=1;
|
||||
q_J = sin(2*pi*f*time);
|
||||
qd_J = (2*pi*f)*cos(2*pi*f*time);
|
||||
qdd_J = -(2*pi*f)^2*sin(2*pi*f*time);
|
||||
q=[q_J;-q_J];
|
||||
qd=[qd_J; -qd_J];
|
||||
qdd=[qdd_J; -qdd_J];
|
||||
g = [0; 0; -9.8];
|
||||
robot_pi1=[1;1/2;0;0;1+1/4;0;0;1+1/4;0;1+1/4];
|
||||
robot_pi2=[1;1/2;0;0;1+1/4;0;0;1+1/4;0;1+1/4];
|
||||
% pi2=zeros([10,1]);
|
||||
robot_pi=[robot_pi1;robot_pi2];
|
||||
tau = zeros([2,100]);
|
||||
for i = 1:length(q_J)
|
||||
regressor = standard_regressor_Two_bar(q(:,i),qd(:,i),qdd(:,i));
|
||||
tau(:,i)=regressor*robot_pi;
|
||||
end
|
||||
% %% Numerical
|
||||
% clear pi;
|
||||
% ndof = robot.ndof;
|
||||
% time = 0:0.01:2;
|
||||
% f=1;
|
||||
% q_J = sin(2*pi*f*time);
|
||||
% qd_J = (2*pi*f)*cos(2*pi*f*time);
|
||||
% qdd_J = -(2*pi*f)^2*sin(2*pi*f*time);
|
||||
% q=[q_J;-q_J];
|
||||
% qd=[qd_J; -qd_J];
|
||||
% qdd=[qdd_J; -qdd_J];
|
||||
% g = [0; 0; -9.8];
|
||||
% robot_pi1=[1;1/2;0;0;1+1/4;0;0;1+1/4;0;1+1/4];
|
||||
% robot_pi2=[1;1/2;0;0;1+1/4;0;0;1+1/4;0;1+1/4];
|
||||
% % pi2=zeros([10,1]);
|
||||
% robot_pi=[robot_pi1;robot_pi2];
|
||||
% tau = zeros([2,100]);
|
||||
% for i = 1:length(q_J)
|
||||
% regressor = standard_regressor_Two_bar(q(:,i),qd(:,i),qdd(:,i));
|
||||
% tau(:,i)=regressor*robot_pi;
|
||||
% end
|
||||
Loading…
Reference in New Issue