IRDYn/get_regressor.asv

65 lines
2.6 KiB
Plaintext
Raw Normal View History

function robot = get_regressor(robot, opt)
% Create symbolic generilized coordiates, their first and second deriatives
ndof = robot.ndof;
q_sym = sym('q%d',[ndof+1,1],'real');
qd_sym = sym('qd%d',[ndof+1,1],'real');
q2d_sym = sym('q2d%d',[ndof+1,1],'real');
% init regressor
robot.regressor.m = sym('m%d',[ndof,1],'real');
robot.regressor.com = sym('com%d',[ndof,1],'real');
robot.regressor.I = sym('I%d',[ndof,1],'real');
robot.regressor.I_vec = inertiaMatrix2Vector(robot.regressor.I);
robot.regressor.mc = robot.regressor.m.*robot.regressor.com;
robot.regressor.pi = [robot.I_vec(:,i); robot.mc(:,i); robot.m(i)];
% init matrix
R = robot.R;
P = robot.t;
w = robot.vel.w ;
dw = robot.vel.dw ;
dv = robot.vel.dv ;
switch opt.LD_method
case 'Direct'
switch opt.KM_method
case 'MDH'
for i = 2:ndof+1
p_skew(:,:,i) = vec2skewSymMat(P(:,:,i));
w_skew(:,:,i) = vec2skewSymMat(w(:,i));
dw_skew(:,:,i) = vec2skewSymMat(dw(:,i));
dv_skew(:,:,i) = vec2skewSymMat(dv(:,i));
w_l(:,:,i) = vec2linearSymMat(w(:,i));
dw_l(:,:,i) = vec2linearSymMat(dw(:,i));
% size of matrix A is 6*10, need to -1
robot.regressor.A(:,:,i-1) = [dv(:,i),dw_skew(:,:,i)+w_skew(:,:,i)*w_skew(:,:,i),zeros(3,6); ...
zeros(3,1),-dv_skew(:,:,i),dw_l(:,:,i)+w_skew(:,:,i)*w_l(:,:,i)];
end
% construct matrix U, size: [6*n,10*n]
% U_ = sym(zeros([6*ndof,10*ndof]));
U_ = [];
for i = 1:ndof
% tricky
for j = i:ndof
if(j == i)
TT = eye(6,6);
U_row = TT*robot.regressor.A(:,:,j);
else
TT = TT*Adjoint(RpToTrans(R(:,:,j),P(:,:,j)));
U_row = [U_row,TT*robot.regressor.A(:,:,j)];
end
end
U_ = [U_;zeros(6,(i-1)*10),U_row];
end
robot.regressor.U = U_;
if(opt.debug)
sprintf('size of U_=%dx%d.',size(robot.regressor.U));
end
robot.regressor.K = [zeros(1,3),Z0]*;
end
% matlabFunction(Y_f,'File','autogen/standard_regressor_Two_bar',...
% 'Vars',{q_sym,qd_sym,q2d_sym});
case 'Lagrange'
disp('TODO opt.LD_method Lagrange!')
return;
otherwise
disp('Bad opt.KM_method!')
return;
end