IRDYn/get_regressor.m

99 lines
4.4 KiB
Mathematica
Raw Normal View History

2024-01-23 13:42:25 +00:00
function robot = get_regressor(robot, opt)
% Create symbolic generilized coordiates, their first and second deriatives
ndof = robot.ndof;
q_sym = sym('q%d',[ndof+1,1],'real');
qd_sym = sym('qd%d',[ndof+1,1],'real');
q2d_sym = sym('qdd%d',[ndof+1,1],'real');
% init regressor
robot.regressor.m = sym('m%d',[ndof,1],'real');
robot.regressor.mc_x = sym('mc%d_x',[ndof,1],'real');
robot.regressor.mc_y = sym('mc%d_y',[ndof,1],'real');
robot.regressor.mc_z = sym('mc%d_z',[ndof,1],'real');
robot.regressor.ixx = sym('i%d_xx',[ndof,1],'real');
robot.regressor.ixy = sym('i%d_xy',[ndof,1],'real');
robot.regressor.ixz = sym('i%d_xz',[ndof,1],'real');
robot.regressor.iyy = sym('i%d_yy',[ndof,1],'real');
robot.regressor.iyz = sym('i%d_yz',[ndof,1],'real');
robot.regressor.izz = sym('i%d_zz',[ndof,1],'real');
robot.regressor.im = sym('im%d',[ndof,1],'real');
for i = 1:ndof
robot.regressor.pi(:,i) = [robot.regressor.m(i),robot.regressor.mc_x(i),robot.regressor.mc_y(i),...
robot.regressor.mc_z(i),robot.regressor.ixx(i),robot.regressor.ixy(i),...
robot.regressor.ixz(i),robot.regressor.iyy(i),robot.regressor.iyz(i),robot.regressor.izz(i)]';
end
[nLnkPrms, nLnks] = size(robot.regressor.pi);
robot.regressor.pi = reshape(robot.regressor.pi, [nLnkPrms*nLnks, 1]);
% init matrix
2024-10-16 13:30:59 +00:00
R = robot.kine.R;
P = robot.kine.t;
2024-01-23 13:42:25 +00:00
w = robot.vel.w ;
dw = robot.vel.dw ;
dv = robot.vel.dv ;
switch opt.LD_method
case 'Direct'
switch opt.KM_method
2024-10-07 15:10:42 +00:00
case {'MDH' , 'SCREW'}
2024-01-23 13:42:25 +00:00
for i = 1:ndof
p_skew(:,:,i) = vec2skewSymMat(P(:,:,i));
w_skew(:,:,i) = vec2skewSymMat(w(:,i));
dw_skew(:,:,i) = vec2skewSymMat(dw(:,i));
dv_skew(:,:,i) = vec2skewSymMat(dv(:,i));
w_l(:,:,i) = vec2linearSymMat(w(:,i));
dw_l(:,:,i) = vec2linearSymMat(dw(:,i));
% size of matrix A is 6*10, need to -1
robot.regressor.A(:,:,i) = [dv(:,i),dw_skew(:,:,i)+w_skew(:,:,i)*w_skew(:,:,i),zeros(3,6); ...
zeros(3,1),-dv_skew(:,:,i),dw_l(:,:,i)+w_skew(:,:,i)*w_l(:,:,i)];
2024-10-16 17:03:10 +00:00
%? match screw method
robot.regressor.A(:,:,i) = Adjoint(RpToTrans(robot.TW(1:3,1:3,i),[0;0;0]))'*robot.regressor.A(:,:,i);
2024-01-23 13:42:25 +00:00
end
% construct matrix U, size: [6*n,10*n]
% U_ = sym(zeros([6*ndof,10*ndof]));
U_ = [];
for i = 1:ndof
% tricky
for j = i:ndof
if(j == i)
TT = eye(6,6);
U_row = TT*robot.regressor.A(:,:,j);
else
TT = TT*Adjoint(RpToTrans(R(:,:,j),P(:,:,j)));
U_row = [U_row,TT*robot.regressor.A(:,:,j)];
end
end
U_ = [U_;zeros(6,(i-1)*10),U_row];
end
robot.regressor.U = U_;
delta_ = zeros([ndof,6*ndof]);
for i = 1:ndof
delta_(i,6*i) = 1;
2024-10-17 00:14:52 +00:00
% %FIXME: use link type
% if(i==ndof)
% delta_(i,6*i) = 0;
% end
2024-01-23 13:42:25 +00:00
end
robot.regressor.K = delta_*robot.regressor.U;
if(opt.debug)
2024-10-16 13:30:59 +00:00
sprintf('size of U=%dx%d.',size(robot.regressor.U))
sprintf('size of K=%dx%d.',size(robot.regressor.K))
2024-01-23 13:42:25 +00:00
end
end
2024-10-16 13:30:59 +00:00
% matlabFunction(robot.regressor.K,'File',sprintf('autogen/standard_regressor_%s',opt.robotName),...
% 'Vars',{q_sym,qd_sym,q2d_sym});
if(opt.reGenerate)
tic
2024-10-17 00:14:52 +00:00
disp('compiling robot.regressor.K');
2024-10-16 13:30:59 +00:00
matlabFunction(robot.regressor.K,'File',sprintf('autogen/standard_regressor_%s',opt.robotName),...
'Vars',{q_sym});
compileTime = toc;
fprintf("The total compile time was: = %d minutes, %d seconds\n", floor(compileTime/60), ceil(rem(compileTime,60)));
end
2024-01-23 13:42:25 +00:00
% matlabFunction(Y_f,'File','autogen/standard_regressor_Two_bar',...
% 'Vars',{q_sym,qd_sym,q2d_sym});
case 'Lagrange'
disp('TODO opt.LD_method Lagrange!')
return;
otherwise
disp('Bad opt.KM_method!')
return;
end