Dynamic-Calibration/screw_algthms/screw_regressor2.m

62 lines
2.1 KiB
Matlab

function Y = screw_regressor2(q,q_d,q_2d,ur10)
gamma0 = [0, 0, 9.81, 0, 0, 0]'; %gravity acceleration vector
T_pk = zeros(4,4,6); %homogenous transformation from p to k
invAd_pk = zeros(6,6,6); %inverse of adjoint matrix from p to k
invAd_0k = zeros(6,6,7); invAd_0k(:,:,1) = eye(6,6);
Jk = zeros(6,6,7); %jacobian up to body k
adj_pk = zeros(6,6,6);
adj_0k = zeros(6,6,6);
xi_k = zeros(6,6);
v_k = zeros(6,7);
Jk_d = zeros(6,6,7);
FI_k = zeros(6,6,6);
Y = [];
for i = 1:1:6
jnt_axs_k = ur10.rot_axes(:,i);
T_pj = ur10.T_pj(:,:,i);
R_jk = Rot(q(i),jnt_axs_k);
p_jk = zeros(3,1);
T_jk = [R_jk, p_jk; zeros(1,3),1];
T_pk(:,:,i) = T_pj*T_jk;
invAd_pk(:,:,i) = inv_Ad_transf(T_pk(:,:,i));
invAd_0k(:,:,i+1) = invAd_pk(:,:,i)*invAd_0k(:,:,i);
Jk(:,:,i+1) = invAd_pk(:,:,i)*Jk(:,:,i) + ur10.XI(:,:,i);
xi_k(:,i) = ur10.XI(:,:,i)*q_d;
v_k(:,i+1) = invAd_pk(:,:,i)*v_k(:,i) + xi_k(:,i);
adj_pk(:,:,i) = adj_transf(xi_k(:,i));
adj_0k(:,:,i) = adj_transf(v_k(:,i+1));
FI_k(:,:,i) = ur10.Lmbd_k(:,:,i)*adj_0k(:,:,i) - adj_0k(:,:,i)'*ur10.Lmbd_k(:,:,i);
Jk_d(:,:,i+1) = invAd_pk(:,:,i)*Jk_d(:,:,i) - adj_pk(:,:,i)*invAd_pk(:,:,i)*Jk(:,:,i);
gamma_k = invAd_0k(:,:,i+1)*gamma0; %body gravitational acceleration
% ------------------------------------------------------------------------
% Estimateing Regressor
% ------------------------------------------------------------------------
r_k = ur10.r_com(:,i);
alpha_k = Jk(:,:,i+1)*q_2d + adj_0k(:,:,i)*Jk(:,:,i+1)*q_d + Jk_d(:,:,i+1)*q_d + gamma_k;
t1 = vec2skewSymMat(r_k);
t2 = vec2skewSymMat(alpha_k(4:6));
A1 = [alpha_k(1:3), t2, zeros(3,6);
zeros(3,1), -vec2skewSymMat(alpha_k(1:3)) + t1*t2, ...
vec2mat_ssmat(alpha_k(4:6))];
t4 = Jk(:,:,i+1)*q_d;
t5 = vec2skewSymMat(t4(4:6));
A2 = [t4(1:3), t5, zeros(3,6);
zeros(3,1), -vec2skewSymMat(t4(1:3)) + t1*t5,...
vec2mat_ssmat(t4(4:6))];
t6 = A1 - adj_0k(:,:,i)'*A2;
Y = [Y, Jk(:,:,i+1)'*t6];
% ------------------------------------------------------------------------
end