Dynamic-Calibration/utils/YALMIP-master/modules/global/branch_and_bound.m

793 lines
28 KiB
Matlab
Executable File

function [x_min,solved_nodes,lower,upper,lower_hist,upper_hist,timing,counter,problem] = branch_and_bound(p,x_min,upper,timing)
% *************************************************************************
% Initialize diagnostic code
% *************************************************************************
problem = 0;
% *************************************************************************
% Create handles to solvers
% *************************************************************************
lowersolver = p.solver.lowersolver.call; % For relaxed lower bound problem
uppersolver = p.solver.uppersolver.call; % Local nonlinear upper bound
lpsolver = p.solver.lpsolver.call; % LP solver for bound propagation
% *************************************************************************f
% GLOBAL PROBLEM DATA (these variables are the same in all nodes)
% *************************************************************************
c = p.c;
Q = p.Q;
f = p.f;
K = p.K;
options = p.options;
% *************************************************************************
% DEFINE UPPER BOUND PROBLEM. Basically just remove the cuts
% *************************************************************************
p_upper = cleanuppermodel(p);
p_upper = compile_nonlinear_table(p_upper);
% *************************************************************************
% Active constraints in main model
% 0 : Inactive constraint (i.e. a cut which unused)
% 1 : Active constraint
% inf : Removed constraint (found to be redundant)
% *************************************************************************
p.InequalityConstraintState = ones(p.K.l,1);
p.InequalityConstraintState(p.KCut.l,1) = 0;
p.EqualityConstraintState = ones(p.K.f,1);
% *************************************************************************
% LPs ARE USED IN BOX-REDUCTION
% *************************************************************************
p.lpcuts = p.F_struc(1+p.K.f:1:p.K.l+p.K.f,:);
p.cutState = ones(p.K.l,1);
p.cutState(p.KCut.l,1) = 0; % Don't use to begin with
% *************************************************************************
% INITIALITAZION
% *************************************************************************
p.depth = 0; % depth in search tree
p.dpos = 0; % used for debugging
p.lower = NaN;
lower = NaN;
gap = inf;
stack = [];
solved_nodes = 0;
numGlobalSolutions = 0;
% *************************************************************************
% Silly hack to speed up solver calls
% *************************************************************************
p.getsolvertime = 0;
counter = p.counter;
if options.bmibnb.verbose>0
disp('* Starting YALMIP global branch & bound.');
disp(['* Branch-variables : ' num2str(length(p.branch_variables))]);
disp(['* Upper solver : ' p.solver.uppersolver.tag]);
disp(['* Lower solver : ' p.solver.lowersolver.tag]);
if p.options.bmibnb.lpreduce
disp(['* LP solver : ' p.solver.lpsolver.tag]);
end
disp(' Node Upper Gap(%) Lower Open');
end
t_start = cputime;
go_on = 1;
reduction_result = [];
lower_hist = [];
upper_hist = [];
p.branchwidth = [];
pseudo_costgain=[];
pseudo_variable=[];
while go_on
% *********************************************************************
% ASSUME THAT WE WON'T FATHOME
% *********************************************************************
keep_digging = 1;
% *********************************************************************
% Strenghten variable bounds a couple of runs
% *********************************************************************
p.changedbounds = 1;
for i = 1:length(options.bmibnb.strengthscheme)
if ~p.feasible
break
end
switch options.bmibnb.strengthscheme(i)
case 1
p = updatebounds_recursive_evaluation(p);
case 2
p = updateboundsfromupper(p,upper,p.originalModel);
case 3
p = propagatequadratics(p);
case 4
p = propagate_bounds_from_complementary(p);
case 5
tstart = tic;
p = domain_reduction(p,upper,lower,lpsolver,x_min);
timing.domainreduce = timing.domainreduce + toc(tstart);
case 6
p = propagate_bounds_from_equalities(p);
otherwise
end
end
% *********************************************************************
% Detect redundant constraints
% *********************************************************************
p = remove_redundant(p);
% *********************************************************************
% SOLVE LOWER AND UPPER
% *********************************************************************
if p.feasible
[output,cost,p,timing] = solvelower(p,options,lowersolver,x_min,upper,timing);
if output.problem == -1
% We have no idea what happened.
% Behave as if it worked, so we can branch as see if things
% clean up nicely
cost = p.lower;
if isnan(cost)
cost = -inf;
end
output.problem = 3;
end
% Cplex sucks...
if output.problem == 12
pp = p;
pp.c = pp.c*0;
[output2,cost2] = solvelower(pp,options,lowersolver,[],[],timing);
if output2.problem == 0
output.problem = 2;
else
output.problem = 1;
end
end
% GLPK sucks in st_e06
if abs(p.lb(p.linears)-p.ub(p.linears)) <= 1e-3 & output.problem==1
x = (p.lb+p.ub)/2;
z = evaluate_nonlinear(p,x);
oldCount = numGlobalSolutions;
if numGlobalSolutions < p.options.bmibnb.numglobal
[upper,x_min,cost,info_text,numGlobalSolutions] = heuristics_from_relaxed(p_upper,x,upper,x_min,cost,numGlobalSolutions);
end
end
info_text = '';
switch output.problem
case {1,12} % Infeasible
info_text = 'Infeasible';
keep_digging = 0;
cost = inf;
feasible = 0;
case 2 % Unbounded (should not happen!)
cost = -inf;
x = output.Primal;
case {0,3,4} % No problems (disregard numerical problems)
if (output.problem == 3) | (output.problem == 4)
info_text = 'Numerical problems in lower bound solver';
end
x = output.Primal;
if ~isempty(p.branchwidth)
if ~isempty(p.lower)
pseudo_costgain = [pseudo_costgain (cost-p.lower)/p.branchwidth];
pseudo_variable = [pseudo_variable p.spliton];
end
end
% UPDATE THE LOWER BOUND
if isnan(lower)
lower = cost;
end
if ~isempty(stack)
lower = min(cost,min([stack.lower]));
else
lower = min(lower,cost);
end
relgap = 100*(upper-lower)/(1+abs(upper));
relgap_too_big = (isinf(lower) | isnan(relgap) | relgap>options.bmibnb.relgaptol);
if cost<upper-1e-5 & relgap_too_big
z = evaluate_nonlinear(p,x);
% Manage cuts etc
p = addsdpcut(p,z);
p = addlpcuts(p,x);
oldCount = numGlobalSolutions;
if numGlobalSolutions < p.options.bmibnb.numglobal
[upper,x_min,cost,info_text2,numGlobalSolutions] = heuristics_from_relaxed(p_upper,x,upper,x_min,cost,numGlobalSolutions);
if length(info_text)==0
info_text = info_text2;
elseif length(info_text2)>0
info_text = [info_text ' | ' info_text2];
else
info_text = info_text;
end
if ~isequal(p.solver.uppersolver.tag,'none')
if upper > p.options.bmibnb.target
if options.bmibnb.lowertarget > lower
[upper,x_min,info_text,numGlobalSolutions,timing] = solve_upper_in_node(p,p_upper,x,upper,x_min,uppersolver,info_text,numGlobalSolutions,timing);
p.counter.uppersolved = p.counter.uppersolved + 1;
end
end
end
end
else
keep_digging = 0;
info_text = 'Poor bound';
end
otherwise
cost = -inf;
x = (p.lb+p.ub)/2;
end
else
info_text = 'Infeasible';
keep_digging = 0;
cost = inf;
feasible = 0;
end
solved_nodes = solved_nodes+1;
% ************************************************
% PRUNE SUBOPTIMAL REGIONS BASED ON UPPER BOUND
% ************************************************
if ~isempty(stack)
[stack,lower] = prune(stack,upper,options,solved_nodes,p);
end
if isempty(stack)
if isinf(cost) && (cost > 0)
lower = upper;
else
lower = cost;
end
else
lower = min(lower,cost);
end
% ************************************************
% CONTINUE SPLITTING?
% ************************************************
if ~isempty(p.branch_variables) && keep_digging && max(p.ub(p.branch_variables)-p.lb(p.branch_variables))>options.bmibnb.vartol && upper > lower
node = [];
spliton = branchvariable(p,options,x);
if ismember(spliton,p.complementary)
i = find(p.complementary(:,1) == spliton);
if isempty(i)
i = find(p.complementary(:,2) == spliton);
end
% Either v1 or v2 is zero
v1 = p.complementary(i,1);
v2 = p.complementary(i,2);
gap_over_v1 = (p.lb(v1)<=0) & (p.ub(v1)>=0) & (p.ub(v1)-p.lb(v2))>0;
gap_over_v2 = (p.lb(v2)<=0) & (p.ub(v2)>=0) & (p.ub(v2)-p.lb(v2))>0;
if gap_over_v1
pp = p;
pp.complementary( find((pp.complementary(:,1)==v1) | (pp.complementary(:,2)==v1)),:)=[];
node = savetonode(pp,v1,0,0,-1,x,cost,p.EqualityConstraintState,p.InequalityConstraintState,p.cutState);
node.bilinears = p.bilinears;
node = updateonenonlinearbound(node,spliton);
if all(node.lb <= node.ub)
node.branchwidth=[];
stack = push(stack,node);
end
end
if gap_over_v2
pp = p;
%pp.complementary(i,:)=[];
pp.complementary( find((pp.complementary(:,1)==v2) | (pp.complementary(:,2)==v2)),:)=[];
node = savetonode(pp,v2,0,0,-1,x,cost,p.EqualityConstraintState,p.InequalityConstraintState,p.cutState);
node.bilinears = p.bilinears;
node = updateonenonlinearbound(node,spliton);
if all(node.lb <= node.ub)
node.branchwidth=[];
stack = push(stack,node);
end
end
end
if isempty(node)
bounds = partition(p,options,spliton,x);
if length(bounds)>3
error('REPORT BOUND LENGTH UNIMPLEMENTED BUG')
end
for i = 1:length(bounds)-1
if ismember(spliton,union(p.binary_variables,p.integer_variables)) & (i==2)
node = savetonode(p,spliton,bounds(i)+1,bounds(i+1),-1,x,cost,p.EqualityConstraintState,p.InequalityConstraintState,p.cutState);
else
node = savetonode(p,spliton,bounds(i),bounds(i+1),-1,x,cost,p.EqualityConstraintState,p.InequalityConstraintState,p.cutState);
end
node.bilinears = p.bilinears;
node = updateonenonlinearbound(node,spliton);
node.branchwidth = [p.ub(spliton)-p.lb(spliton)];
if all(node.lb <= node.ub)
stack = push(stack,node);
end
end
end
if ~isempty(stack)
lower = min([stack.lower]);
end
end
if ~isempty(p)
counter = p.counter;
end
% ************************************************
% Pick and create a suitable node
% ************************************************
[p,stack] = selectbranch(p,options,stack,x_min,upper);
if isempty(p)
if ~isinf(upper)
relgap = 0;
end
if isinf(upper) & isinf(lower)
relgap = inf;
end
depth = 0;
else
relgap = 100*(upper-lower)/(1+max(abs(lower)+abs(upper))/2);
depth = p.depth;
end
if options.bmibnb.verbose>0
fprintf(' %4.0f : %12.3E %7.2f %12.3E %2.0f %s \n',solved_nodes,upper,relgap,lower,length(stack)+length(p),info_text);
end
absgap = upper-lower;
% ************************************************
% Continue?
% ************************************************
time_ok = cputime-t_start < options.bmibnb.maxtime;
iter_ok = solved_nodes < options.bmibnb.maxiter;
any_nodes = ~isempty(p);
relgap_too_big = (isinf(lower) | isnan(relgap) | relgap>100*options.bmibnb.relgaptol);
absgap_too_big = (isinf(lower) | isnan(absgap) | absgap>options.bmibnb.absgaptol);
uppertarget_not_met = upper > options.bmibnb.target;
lowertarget_not_met = lower < options.bmibnb.lowertarget;
go_on = uppertarget_not_met & lowertarget_not_met & time_ok & any_nodes & iter_ok & relgap_too_big & absgap_too_big;
lower_hist = [lower_hist lower];
upper_hist = [upper_hist upper];
end
if options.bmibnb.verbose>0
fprintf(['* Finished. Cost: ' num2str(upper) ' Gap: ' num2str(relgap) '\n']);
if ~time_ok
fprintf(['* Termination due to time limit \n']);
elseif ~iter_ok
fprintf(['* Termination due to iteration limit \n']);
elseif ~any_nodes
fprintf(['* Termination with all nodes pruned \n']);
elseif ~relgap_too_big
fprintf(['* Termination with relative gap satisfied \n']);
elseif ~absgap_too_big
fprintf(['* Termination with relative gap satisfied \n']);
elseif uppertarget_not_met
fprintf(['* Termination with upper bound limit reached \n']);
elseif uppertarget_not_met
fprintf(['* Termination with upper bound target reached \n']);
elseif lowertarget_not_met
fprintf(['* Termination with lower bound target reached \n']);
end
end
if ~time_ok || ~iter_ok
problem = 3;
end
% *************************************************************************
% Stack functionality
% *************************************************************************
function stack = push(stackin,p)
if ~isempty(stackin)
stack = [p;stackin];
else
stack(1)=p;
end
function [p,stack] = pull(stack,method,x_min,upper,branch_variables);
if ~isempty(stack)
switch method
case 'maxvol'
for i = 1:length(stack)
vol(i) = sum(stack(i).ub(branch_variables)-stack(i).lb(branch_variables));
end
[i,j] = max(vol);
p=stack(j);
stack = stack([1:1:j-1 j+1:1:end]);
case 'best'
[i,j]=min([stack.lower]);
p=stack(j);
stack = stack([1:1:j-1 j+1:1:end]);
otherwise
end
else
p =[];
end
function [stack,lower] = prune(stack,upper,options,solved_nodes,p)
if ~isempty(stack)
toolarge = find([stack.lower]>upper*(1+1e-4));
if ~isempty(toolarge)
stack(toolarge)=[];
end
if ~isempty(stack)
for j = 1:length(stack)
if nnz(p.c.*(stack(j).ub-stack(j).lb)) == 1 & nnz(p.Q)==0
i = find(p.c.*(stack(j).ub-stack(j).lb));
if p.c(i)>0
stack(j).ub(i) = min([stack(j).ub(i) upper]);
end
end
end
indPOS = find(p.c>0);
indNEG = find(p.c<0);
LB = [stack.lb];
UB = [stack.ub];
LOWER = p.c([indPOS(:);indNEG(:)])'*[LB(indPOS,:);UB(indNEG,:)];
toolarge = find(LOWER > upper*(1-1e-8));
stack(toolarge)=[];
end
end
if ~isempty(stack)
lower = min([stack.lower]);
else
lower = upper;
end
function node = savetonode(p,spliton,bounds1,bounds2,direction,x,cost,EqualityConstraintState,InequalityConstraintState,cutState);
node.lb = p.lb;
node.ub = p.ub;
node.lb(spliton) = bounds1;
node.ub(spliton) = bounds2;
node.lb(p.integer_variables) = ceil(node.lb(p.integer_variables));
node.ub(p.integer_variables) = floor(node.ub(p.integer_variables));
node.lb(p.binary_variables) = ceil(node.lb(p.binary_variables));
node.ub(p.binary_variables) = floor(node.ub(p.binary_variables));
node.complementary = p.complementary;
if direction == -1
node.dpos = p.dpos-1/(2^sqrt(p.depth));
else
node.dpos = p.dpos+1/(2^sqrt(p.depth));
end
node.spliton = spliton;
node.depth = p.depth+1;
node.x0 = x;
node.lpcuts = p.lpcuts;
node.lower = cost;
node.InequalityConstraintState = InequalityConstraintState;
node.EqualityConstraintState = EqualityConstraintState;
node.cutState = cutState;
% *************************************
% DERIVE LINEAR CUTS FROM SDPs
% *************************************
function p = addsdpcut(p,x)
if p.K.s > 0
top = p.K.f+p.K.l+1;
newcuts = 1;
newF = [];
for i = 1:length(p.K.s)
n = p.K.s(i);
X = p.F_struc(top:top+n^2-1,:)*[1;x];
X = full(reshape(X,n,n));
[d,v] = eig(X);
for m = 1:length(v)
if v(m,m)<0
for j = 1:length(x)+1;
newF(newcuts,j)= d(:,m)'*reshape(p.F_struc(top:top+n^2-1,j),n,n)*d(:,m);
end
% max(abs(newF(:,2:end)),[],2)
newF(newcuts,1)=newF(newcuts,1)+1e-6;
newcuts = newcuts + 1;
if size(p.lpcuts,1)>0
dist = p.lpcuts*newF(newcuts-1,:)'/(newF(newcuts-1,:)*newF(newcuts-1,:)');
if any(abs(dist-1)<1e-3)
newF = newF(1:end-1,:);
newcuts = newcuts - 1;
end
end
end
end
top = top+n^2;
end
if ~isempty(newF)
% Don't keep all
m = size(newF,2);
% size(p.lpcuts)
p.lpcuts = [newF;p.lpcuts];
p.cutState = [ones(size(newF,1),1);p.cutState];
violations = p.lpcuts*[1;x];
p.lpcuts = p.lpcuts(violations<0.1,:);
if size(p.lpcuts,1)>15*m
disp('!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!');
violations = p.lpcuts*[1;x];
[i,j] = sort(violations);
%p.lpcuts = p.lpcuts(j(1:15*m),:);
%p.cutState = lpcuts = p.lpcuts(j(1:15*m),:);
%p.lpcuts = p.lpcuts(end-15*m+1:end,:);
end
end
end
function p = addlpcuts(p,z)
if ~isempty(p.lpcuts)
inactiveCuts = find(~p.cutState);
violation = p.lpcuts(inactiveCuts,:)*[1;z];
need_to_add = find(violation < -1e-4);
if ~isempty(need_to_add)
p.cutState(inactiveCuts(need_to_add)) = 1;
end
inactiveCuts = find(p.InequalityConstraintState == 0 );
violation = p.F_struc(p.K.f+inactiveCuts,:)*[1;z];
need_to_add = find(violation < -1e-4);
if ~isempty(need_to_add)
p.InequalityConstraintState(inactiveCuts(need_to_add)) = 1;
end
end
% *************************************************************************
% Strategy for deciding which variable to branch on
% *************************************************************************
function spliton = branchvariable(p,options,x)
% Split if box is to narrow
width = abs(p.ub(p.branch_variables)-p.lb(p.branch_variables));
% if ~isempty(p.binary_variables)
% width_bin = min([abs(1-x(p.binary_variables)) abs(x(p.binary_variables))],[],2);
% end
if isempty(p.bilinears) | ~isempty(p.evalMap) | any(p.variabletype > 2)%(min(width)/max(width) < 0.1) | (size(p.bilinears,1)==0) %
[i,j] = max(width);%.*p.weight(p.branch_variables));
spliton = p.branch_variables(j);
else
res = x(p.bilinears(:,1))-x(p.bilinears(:,2)).*x(p.bilinears(:,3));
[ii,jj] = sort(abs(res));
v1 = p.bilinears(jj(end),2);
v2 = p.bilinears(jj(end),3);
acc_res1 = sum(abs(res(find((p.bilinears(:,2)==v1) | p.bilinears(:,3)==v1))));
acc_res2 = sum(abs(res(find((p.bilinears(:,2)==v2) | p.bilinears(:,3)==v2))));
if abs(acc_res1-acc_res2)<1e-3 & ismember(v2,p.branch_variables) & ismember(v1,p.branch_variables)
if abs(p.ub(v1)-p.lb(v1))>abs(p.ub(v2)-p.lb(v2))
spliton = v1;
elseif abs(p.ub(v1)-p.lb(v1))<abs(p.ub(v2)-p.lb(v2))
spliton = v2;
else
% Oops, two with the same impact. To avoid that we keep pruning on
% a variable that doesn't influence the bounds, we flip a coin on
% which to branch on
if rand(1)>0.5
spliton = v1;
else
spliton = v2;
end
end
else
if (~ismember(v2,p.branch_variables) | (acc_res1>acc_res2)) & ismember(v1,p.branch_variables)
spliton = v1;
elseif ismember(v2,p.branch_variables)
spliton = v2;
else
[i,j] = max(width);
spliton = p.branch_variables(j);
end
end
end
% *************************************************************************
% Strategy for diving the search space
% *************************************************************************
function bounds = partition(p,options,spliton,x_min)
x = x_min;
if isinf(p.lb(spliton))
%bounds = [p.lb(spliton) x_min(spliton) p.ub(spliton)]
%return
p.lb(spliton) = -1e6;
end
if isinf(p.ub(spliton))
%bounds = [p.lb(spliton) x_min(spliton) p.ub(spliton)]
%return
p.ub(spliton) = 1e6;
end
switch options.bmibnb.branchrule
case 'omega'
if ~isempty(x_min)
U = p.ub(spliton);
L = p.lb(spliton);
x = x(spliton);
bounds = [p.lb(spliton) 0.5*max(p.lb(spliton),min(x_min(spliton),p.ub(spliton)))+0.5*(p.lb(spliton)+p.ub(spliton))/2 p.ub(spliton)];
else
bounds = [p.lb(spliton) (p.lb(spliton)+p.ub(spliton))/2 p.ub(spliton)];
end
case 'bisect'
bounds = [p.lb(spliton) (p.lb(spliton)+p.ub(spliton))/2 p.ub(spliton)];
otherwise
bounds = [p.lb(spliton) (p.lb(spliton)+p.ub(spliton))/2 p.ub(spliton)];
end
if isnan(bounds(2)) %FIX
if isinf(p.lb(spliton))
p.lb(spliton) = -1e6;
end
if isinf(p.ub(spliton))
p.ub(spliton) = 1e6;
end
bounds(2) = (p.lb(spliton)+p.ub(spliton))/2;
end
function [p,stack] = selectbranch(p,options,stack,x_min,upper,cost_improvements)
switch options.bmibnb.branchmethod
case 'maxvol'
[node,stack] = pull(stack,'maxvol',x_min,upper,p.branch_variables);
case 'best'
[node,stack] = pull(stack,'best',x_min,upper);
case 'best-estimate'
[node,stack] = pull(stack,'best-estimate',x_min,upper,[],cost_improvements);
otherwise
[node,stack] = pull(stack,'best',x_min,upper);
end
% Copy node data to p
if isempty(node)
p = [];
else
p.depth = node.depth;
p.dpos = node.dpos;
p.spliton = node.spliton;
p.lb = node.lb;
p.ub = node.ub;
p.lower = node.lower;
p.lpcuts = node.lpcuts;
p.x0 = node.x0;
p.InequalityConstraintState = node.InequalityConstraintState;
p.EqualityConstraintState = node.EqualityConstraintState;
p.complementary = node.complementary;
p.cutState = node.cutState;
p.feasible = 1;
p.branchwidth = node.branchwidth;
end
% *************************************************************************
% Heuristics from relaxed
% Basically nothing coded yet. Just check feasibility...
% *************************************************************************
function [upper,x_min,cost,info_text,numglobals] = heuristics_from_relaxed(p_upper,x,upper,x_min,cost,numglobals)
%load dummy;U = [x(1) x(2) x(4);0 x(3) x(5);0 0 x(6)];P=U'*U;i = find(triu(ones(length(A))-eye(length(A))));-log(det(U'*U))+trace(A*U'*U)+2*sum(invsathub(P(i),lambda))
x(p_upper.binary_variables) = round(x(p_upper.binary_variables));
x(p_upper.integer_variables) = round(x(p_upper.integer_variables));
z = apply_recursive_evaluation(p_upper,x(1:length(p_upper.c)));
%z = evaluate_nonlinear(p_upper,x);
relaxed_residual = constraint_residuals(p_upper,z);
eq_ok = all(relaxed_residual(1:p_upper.K.f)>=-p_upper.options.bmibnb.eqtol);
iq_ok = all(relaxed_residual(1+p_upper.K.f:end)>=p_upper.options.bmibnb.pdtol);
relaxed_feasible = eq_ok & iq_ok;
info_text = '';
if relaxed_feasible
this_upper = p_upper.f+p_upper.c'*z+z'*p_upper.Q*z;
if (this_upper < (1-1e-5)*upper) & (this_upper < upper - 1e-5)
x_min = x;
upper = this_upper;
info_text = 'Improved solution';
cost = cost-1e-10; % Otherwise we'll fathome!
numglobals = numglobals + 1;
end
end
% *************************************************************************
% Detect redundant constraints
% *************************************************************************
function p = remove_redundant(p);
if isempty(p.F_struc)
return
end
b = p.F_struc(1+p.K.f:p.K.l+p.K.f,1);
A = -p.F_struc(1+p.K.f:p.K.l+p.K.f,2:end);
redundant = find(((A>0).*A*(p.ub-p.lb) - (b-A*p.lb) <-1e-2));
if length(redundant)>1
p.InequalityConstraintState(redundant) = inf;
end
if p.options.bmibnb.lpreduce
b = p.lpcuts(:,1);
A = -p.lpcuts(:,2:end);
redundant = find(((A>0).*A*(p.ub-p.lb) - (b-A*p.lb) <-1e-2));
if length(redundant)>1
p.lpcuts(redundant,:) = [];
p.cutState(redundant) = [];
end
end
if p.K.f > 0
b = p.F_struc(1:p.K.f,1);
A = -p.F_struc(1:p.K.f,2:end);
s1 = ((A>0).*A*(p.ub-p.lb) - (b-A*p.lb) <1e-6);
s2 = ((-A>0).*(-A)*(p.ub-p.lb) - ((-b)-(-A)*p.lb) <1e-6);
redundant = find(s1 & s2);
if length(redundant)>1
p.EqualityConstraintState(redundant) = inf;
end
end
% *************************************************************************
% Clean the upper bound model
% Remove cut constraints, and
% possibly unused variables not used
% *************************************************************************
function p = cleanuppermodel(p);
% We might have created a bilinear model from an original polynomial model.
% We should use the original model when we solve the upper bound problem.
p_bilinear = p;
p = p.originalModel;
% Remove cuts
p.F_struc(p.K.f+p.KCut.l,:)=[];
p.K.l = p.K.l - length(p.KCut.l);
n_start = length(p.c);
% Quadratic mode, and quadratic aware solver?
bilinear_variables = find(p.variabletype == 1 | p.variabletype == 2);
if ~isempty(bilinear_variables)
used_in_c = find(p.c);
quadraticterms = used_in_c(find(ismember(used_in_c,bilinear_variables)));
if ~isempty(quadraticterms) & p.solver.uppersolver.objective.quadratic.nonconvex
usedinquadratic = zeros(1,length(p.c));
for i = 1:length(quadraticterms)
Qij = p.c(quadraticterms(i));
power_index = find(p.monomtable(quadraticterms(i),:));
if length(power_index) == 1
p.Q(power_index,power_index) = Qij;
else
p.Q(power_index(1),power_index(2)) = Qij/2;
p.Q(power_index(2),power_index(1)) = Qij/2;
end
p.c(quadraticterms(i)) = 0;
end
end
end
% Remove SDP cuts
if length(p.KCut.s)>0
starts = p.K.f+p.K.l + [1 1+cumsum((p.K.s).^2)];
remove_these = [];
for i = 1:length(p.KCut.s)
j = p.KCut.s(i);
remove_these = [remove_these;(starts(j):starts(j+1)-1)'];
end
p.F_struc(remove_these,:)=[];
p.K.s(p.KCut.s) = [];
end
p.lb = p_bilinear.lb(1:length(p.c));
p.ub = p_bilinear.ub(1:length(p.c));
p.bilinears = [];