Dynamic-Calibration/utils/SDPT3-4.0/Solver/Oldmfiles/lanczos.m

95 lines
3.1 KiB
Matlab
Executable File

%%***************************************************************************
%% lanczos: find the largest eigenvalue of
%% invXchol'*dX*invXchol via the lanczos iteration.
%%
%% [lam,delta] = lanczos(Xchol,dX,maxit,tol,v)
%%
%% lam: an estimate of the largest eigenvalue.
%% lam2: an estimate of the second largest eigenvalue.
%% res: residual norm of the largest eigen-pair.
%% res2: residual norm of the second largest eigen-pair.
%%***************************************************************************
function [lam,delta,res] = lanczos(Xchol,dX,maxit,tol,v)
if (norm(dX,'fro') < 1e-13)
lam = 0; delta = 0; res = 0;
return;
end
n = length(dX);
if (nargin < 5);
state = randn('state');
randn('state',0);
v = randn(n,1);
randn('state',state);
end
if (nargin < 4); maxit = 30; end
if (nargin < 3); tol = 1e-3; end
V = zeros(n,maxit+1); H = zeros(maxit+1,maxit);
v = v/norm(v);
V(:,1) = v;
if issparse(Xchol); Xcholtransp = Xchol'; end
%%
%% lanczos iteration.
%%
for k = 1:maxit
if issparse(Xchol)
w = dX*mextriangsp(Xcholtransp,v,1);
w = mextriangsp(Xchol,w,2);
else
w = dX*mextriang(Xchol,v,1);
w = mextriang(Xchol,w,2);
end
wold = w;
if (k > 1);
w = w - H(k,k-1)*V(:,k-1);
end;
alp = w'*V(:,k);
w = w - alp*V(:,k);
H(k,k) = alp;
%%
%% one step of iterative refinement if necessary.
%%
if (norm(w) <= 0.8*norm(wold));
s = (w'*V(:,1:k))';
w = w - V(:,1:k)*s;
H(1:k,k) = H(1:k,k) + s;
end;
nrm = norm(w);
v = w/nrm;
V(:,k+1) = v;
H(k+1,k) = nrm; H(k,k+1) = nrm;
%%
%% compute ritz pairs and test for convergence
%%
if (rem(k,5) == 0) | (k == maxit);
Hk = H(1:k,1:k); Hk = 0.5*(Hk+Hk');
[Y,D] = eig(Hk);
eigH = real(diag(D));
[dummy,idx] = sort(eigH);
res_est = abs(H(k+1,k)*Y(k,idx(k)));
if (res_est <= 0.1*tol) | (k == maxit);
lam = eigH(idx(k));
lam2 = eigH(idx(k-1));
z = V(:,1:k)*Y(:,idx(k));
z2 = V(:,1:k)*Y(:,idx(k-1));
if issparse(Xchol)
tmp = dX*mextriangsp(Xcholtransp,z,1);
res = norm(mextriangsp(Xchol,tmp,2) -lam*z);
tmp = dX*mextriangsp(Xcholtransp,z2,1);
res2 = norm(mextriangsp(Xchol,tmp,2) -lam*z2);
else
tmp = dX*mextriang(Xchol,z,1);
res = norm(mextriang(Xchol,tmp,2) -lam*z);
tmp = dX*mextriang(Xchol,z2,1);
res2 = norm(mextriang(Xchol,tmp,2) -lam*z2);
end
tmp = lam-lam2 -res2;
if (tmp > 0); beta = tmp; else; beta = eps; end;
delta = min(res,res^2/beta);
if (delta <= tol); break; end;
end
end
end
%%***************************************************************************