197 lines
5.8 KiB
Matlab
Executable File
197 lines
5.8 KiB
Matlab
Executable File
function varargout = solvemp(F,h,ops,x,y)
|
|
%SOLVEMP Computes solution to multi-parametric optimization problem
|
|
%
|
|
% min_z(x) h(x,z)
|
|
% subject to
|
|
% F(x,z) >= 0
|
|
%
|
|
%
|
|
% [SOL, DIAGNOSTIC,Z,HPWF,ZPWF] = SOLVEMP(F,h,options,x,y)
|
|
%
|
|
% SOL : Multi-parametric solution (see MPT toolbox)
|
|
%
|
|
% DIAGNOSTIC : struct with diagnostic information
|
|
%
|
|
% Z : SDPVAR object with the detected decision variable z
|
|
%
|
|
% HPWF : The value function as a pwf function
|
|
%
|
|
% ZPWF : The optimal decision variable as a pfw function
|
|
%
|
|
% Input
|
|
% F : Object describing the constraints.
|
|
% h : SDPVAR object describing the objective function h(x,z).
|
|
% options : solver options. See SDPSETTINGS. Can be [].
|
|
% x : Parametric variables
|
|
% y : Requested decision variables (subset of z)
|
|
%
|
|
% NOTE : If you are solving a problem leading to an mpMILP, the
|
|
% output SOL will be a set-valued map. To obtain the minimal
|
|
% solution (without so called overlaps), run removeOverlaps(SOL). If you
|
|
% have requested the 5th output ZPWF, overlaps are automatically removed.
|
|
% If your problem leads to an mpMIQP, the output SOL will also be a
|
|
% set-valued map, but there is currently no way in MPT to obtain a
|
|
% non-overlapping solution. To use the solution in MPT, the command
|
|
% mpt_mergeCS(SOL) can be useful. Notice that the fifth output argument
|
|
% not will be available for mpMIQP problems.
|
|
%
|
|
% See also PARAMETRIC, SET, SDPSETTINGS, YALMIPERROR
|
|
|
|
% Author Johan Löfberg
|
|
% $Id: solvemp.m,v 1.11 2007-08-17 13:17:16 joloef Exp $
|
|
|
|
if nargin <= 3
|
|
ops = sdpsettings;
|
|
end
|
|
|
|
if nargin <=3
|
|
x = [];
|
|
y = [];
|
|
end
|
|
|
|
if isa(F,'constraint')
|
|
F = lmi(F);
|
|
end
|
|
|
|
par_declarations = is(F,'parametric');
|
|
if any(par_declarations)
|
|
x = [x;recover(getvariables(sdpvar(F(find(par_declarations)))))];
|
|
F = F(find(~par_declarations));
|
|
end
|
|
|
|
if length(x) == 0
|
|
error('solvemp must always have 4 input arguments or a parametric declaration');
|
|
end
|
|
|
|
if ~isempty(ops)
|
|
if isequal(ops.solver,'')
|
|
ops.solver = 'mpt,pop';
|
|
end
|
|
else
|
|
ops = sdpsettings('solver','mpt,pop');
|
|
end
|
|
|
|
if nargin == 4
|
|
y = [];
|
|
ny = 0;
|
|
my = 0;
|
|
else
|
|
% YALMIP wants a vector as desired decsision variable
|
|
[ny,my] = size(y);
|
|
y = reshape(y,ny*my,1);
|
|
end
|
|
|
|
% Robustify first?
|
|
if length(F) > 0
|
|
unc_declarations = is(F,'uncertain');
|
|
if any(unc_declarations)
|
|
w = recover(getvariables(sdpvar(F(find(unc_declarations)))));
|
|
F = F(find(~unc_declarations));
|
|
[F,h,failure] = robustify(F,h,ops,w);
|
|
if failure
|
|
error('Derivation of robust counter-part failed')
|
|
end
|
|
end
|
|
end
|
|
|
|
if max(size(h))>1
|
|
error('Objective function must be scalar or empty');
|
|
end
|
|
|
|
sol = solvesdp(F,h,ops,x,y);
|
|
|
|
if isfield(sol,'mpsol')
|
|
if ~isfield(sol.mpsol,'model')
|
|
varargout{1} = [];
|
|
varargout{2} = sol;
|
|
varargout{3} = [];
|
|
varargout{4} = [];
|
|
varargout{5} = [];
|
|
elseif isempty(sol.mpsol.model{1})
|
|
varargout{1} = sol.mpsol.model;
|
|
varargout{2} = sol;
|
|
varargout{3} = [];
|
|
varargout{4} = [];
|
|
varargout{5} = [];
|
|
else
|
|
|
|
mpsolution = sol.mpsol.model;
|
|
varargout{1} = sol.mpsol.model;
|
|
|
|
if nargout > 2
|
|
z = recover(sol.solveroutput.U);
|
|
x = recover(sol.solveroutput.x);
|
|
varargout{3}= z;
|
|
end
|
|
|
|
if nargout > 3
|
|
% User wants the value function
|
|
if length(mpsolution) == 1
|
|
if isequal(mpsolution{1}.convex,1)
|
|
% Simple mpLP value function
|
|
if ops.mp.simplify
|
|
s = mpsolution{1};
|
|
s.Fi = s.Bi;
|
|
s.Gi = s.Ci;
|
|
s = mpt_simplify(s);
|
|
s.Bi = s.Fi;
|
|
s.Ci = s.Gi;
|
|
varargout{4} = pwf(s,x,'convex');
|
|
else
|
|
varargout{4} = pwf(mpsolution{1},x,'convex');
|
|
end
|
|
else
|
|
% Probably generated from removing overlaps
|
|
varargout{4} = pwf(mpsolution,x,'general');
|
|
end
|
|
else
|
|
% No overlap removal done
|
|
varargout{4} = pwf(mpsolution,x,'convexoverlapping');
|
|
end
|
|
end
|
|
|
|
if nargout > 4
|
|
% User wants optimizer in YALMIP format
|
|
% Any overlaps?
|
|
anyQP = 0;
|
|
if length(varargout{1}) > 1
|
|
for i = 1:length(sol.mpsol.model)
|
|
if nnz([sol.mpsol.model{i}.Ai{:}])>0
|
|
anyQP = 1;
|
|
break
|
|
end
|
|
end
|
|
if ~anyQP
|
|
minimalmodel{1} = mpt_removeOverlaps(sol.mpsol.model);
|
|
varargout{1} = minimalmodel;
|
|
end
|
|
else
|
|
minimalmodel = varargout{1};
|
|
end
|
|
% PWA assumes we want Bi and Ci
|
|
if ~anyQP
|
|
minimalmodel{1}.valuefunction.Bi = minimalmodel{1}.Bi;
|
|
minimalmodel{1}.valuefunction.Ci = minimalmodel{1}.Ci;
|
|
minimalmodel{1}.Ai = cell(1,length(minimalmodel{1}.Fi));
|
|
minimalmodel{1}.Bi = minimalmodel{1}.Fi;
|
|
minimalmodel{1}.Ci = minimalmodel{1}.Gi;
|
|
varargout{5} = pwf(minimalmodel,x,'general');
|
|
if min([ny my])>0
|
|
varargout{5} = reshape(varargout{5},ny,my);
|
|
end
|
|
else
|
|
disp('Optimizer (5th output) not available for overlapping quadratic problems.');
|
|
varargout{5} = [];
|
|
end
|
|
end
|
|
end
|
|
else
|
|
varargout{1} = [];
|
|
varargout{2} = sol;
|
|
varargout{3} = [];
|
|
varargout{4} = [];
|
|
varargout{5} = [];
|
|
end
|
|
varargout{2} = sol;
|
|
|