Dynamic-Calibration/utils/YALMIP-master/extras/@lmi/categorizeproblem.m

505 lines
19 KiB
Matlab
Executable File

function [problem,integer_variables,binary_variables,parametric_variables,uncertain_variables,semicont_variables,quad_info] = categorizeproblem(F,P,h,relax,parametric,evaluation,F_vars,exponential_cone)
%categorizeproblem Internal function: tries to determine the type of optimization problem
F = flatten(F);
Counter = length(F.LMIid);
Ftype = zeros(Counter,1);
real_data = 1;
int_data = 0;
interval_data = 0;
bin_data = 0;
par_data = 0;
scn_data = 0;
poly_constraint = 0;
bilin_constraint = 0;
sigm_constraint = 0;
rank_constraint = 0;
rank_objective = 0;
exp_cone = 0;
parametric_variables = [];
kyp_prob = 0;
gkyp_prob = 0;
% ***********************************************
% Setup an empty problem definition
% ***********************************************
problem.objective.linear = 0;
problem.objective.quadratic.convex = 0;
problem.objective.quadratic.nonconvex = 0;
problem.objective.quadratic.nonnegative = 0;
problem.objective.polynomial = 0;
problem.objective.maxdet.convex = 0;
problem.objective.maxdet.nonconvex = 0;
problem.objective.sigmonial = 0;
problem.constraint.equalities.linear = 0;
problem.constraint.equalities.quadratic = 0;
problem.constraint.equalities.polynomial = 0;
problem.constraint.equalities.sigmonial = 0;
problem.constraint.inequalities.elementwise.linear = 0;
problem.constraint.inequalities.elementwise.quadratic.convex = 0;
problem.constraint.inequalities.elementwise.quadratic.nonconvex = 0;
problem.constraint.inequalities.elementwise.sigmonial = 0;
problem.constraint.inequalities.elementwise.polynomial = 0;
problem.constraint.inequalities.semidefinite.linear = 0;
problem.constraint.inequalities.semidefinite.quadratic = 0;
problem.constraint.inequalities.semidefinite.polynomial = 0;
problem.constraint.inequalities.semidefinite.sigmonial = 0;
problem.constraint.inequalities.rank = 0;
problem.constraint.inequalities.secondordercone.linear = 0;
problem.constraint.inequalities.secondordercone.nonlinear = 0;
problem.constraint.inequalities.rotatedsecondordercone.linear = 0;
problem.constraint.inequalities.rotatedsecondordercone.nonlinear = 0;
problem.constraint.inequalities.powercone = 0;
problem.constraint.complementarity.variable = 0;
problem.constraint.complementarity.linear = 0;
problem.constraint.complementarity.nonlinear = 0;
problem.constraint.integer = 0;
problem.constraint.binary = 0;
problem.constraint.semicont = 0;
problem.constraint.sos1 = 0;
problem.constraint.sos2 = 0;
problem.complex = 0;
problem.parametric = parametric;
problem.interval = 0;
problem.evaluation = evaluation;
problem.exponentialcone = exponential_cone;
% ********************************************************
% Make a list of all globally available discrete variables
% ********************************************************
integer_variables = yalmip('intvariables');
binary_variables = yalmip('binvariables');
semicont_variables = yalmip('semicontvariables');
uncertain_variables = yalmip('uncvariables');
for i = 1:Counter
switch F.clauses{i}.type
case 7
integer_variables = union(integer_variables,getvariables(F.clauses{i}.data));
case 8
binary_variables = union(binary_variables,getvariables(F.clauses{i}.data));
case 13
parametric_variables = union(parametric_variables,getvariables(F.clauses{i}.data));
case 52
semicont_variables = union(semicont_variables,getvariables(F.clauses{i}.data));
otherwise
end
end
% ********************************************************
% Logarithmic objective?
% ********************************************************
if ~isempty(P)
problem.objective.maxdet.convex = 1;
problem.objective.maxdet.nonconvex = 1;
problem.objective.maxdet.convex = all(P.gain<=0);
problem.objective.maxdet.nonconvex = any(P.gain>0);
end
%problem.objective.maxdet = ~isempty(P);
% ********************************************************
% Rank variables
% ********************************************************
rank_variables = yalmip('rankvariables');
any_rank_variables = ~isempty(rank_variables);
% ********************************************************
% Make a list of all globally available nonlinear variables
% ********************************************************
[monomtable,variabletype] = yalmip('monomtable');
linear_variables = find(variabletype==0);
nonlinear_variables = find(variabletype~=0);
sigmonial_variables = find(variabletype==4);
if isempty(F_vars)
allvars = getvariables(F);
else
allvars = F_vars;
end
members = ismembcYALMIP(nonlinear_variables,allvars);
any_nonlinear_variables =~isempty(find(members));
any_discrete_variables = ~isempty(integer_variables) | ~isempty(binary_variables) | ~isempty(semicont_variables);
interval_data = isinterval(h);
problem.constraint.equalities.multiterm = 0;
for i = 1:Counter
Fi = F.clauses{i};
% Only real-valued data?
real_data = real_data & isreal(Fi.data);
interval_data = interval_data | isinterval(Fi.data);
% Any discrete variables used
if any_discrete_variables
Fvar = getvariables(Fi.data);
int_data = int_data | any(ismembcYALMIP(Fvar,integer_variables));
bin_data = bin_data | any(ismembcYALMIP(Fvar,binary_variables));
par_data = par_data | any(ismembcYALMIP(Fvar,parametric_variables));
scn_data = scn_data | any(ismembcYALMIP(Fvar,semicont_variables));
end
if any_rank_variables
rank_constraint = rank_constraint | any(ismember(getvariables(Fi.data),rank_variables));
end
% Check for equalities violating GP definition
if problem.constraint.equalities.multiterm == 0
if Fi.type==3
if isempty(strfind(Fi.handle,'Expansion of'))
if multipletermsInEquality(Fi)
problem.constraint.equalities.multiterm = 1;
end
end
end
end
if ~any_nonlinear_variables % No nonlinearly parameterized constraints
switch Fi.type
case {1,9,40}
problem.constraint.inequalities.semidefinite.linear = 1;
case 2
problem.constraint.inequalities.elementwise.linear = 1;
case 3
problem.constraint.equalities.linear = 1;
case {4,54}
problem.constraint.inequalities.secondordercone.linear = 1;
case 5
problem.constraint.inequalities.rotatedsecondordercone.linear = 1;
case 20
problem.constraint.inequalities.powercone = 1;
case 21
problem.exponentialcone = 1;
case 50
problem.constraint.sos2 = 1;
case 51
problem.constraint.sos1 = 1;
case 55
problem.constraint.complementarity.linear = 1;
otherwise
end
else
% Can be nonlinear stuff
vars = getvariables(Fi.data);
usednonlins = find(ismembcYALMIP(nonlinear_variables,vars));
if ~isempty(usednonlins)
usedsigmonials = find(ismember(sigmonial_variables,vars));
if ~isempty(usedsigmonials)
switch Fi.type
case 1
problem.constraint.inequalities.semidefinite.sigmonial = 1;
case 2
problem.constraint.inequalities.elementwise.sigmonial = 1;
case 3
problem.constraint.equalities.sigmonial = 1;
case {4,54}
problem.constraint.inequalities.secondordercone.nonlinear = 1;
case 5
error('Sigmonial RSOCP not supported');
otherwise
error('Report bug in problem classification (sigmonial constraint)');
end
else
%deg = degree(Fi.data);
types = variabletype(getvariables(Fi.data));
if ~any(types)
deg = 1;
elseif any(types==1) || any(types==2)
deg = 2;
else
deg = NaN;
end
switch deg
case 1
switch Fi.type
case 1
problem.constraint.inequalities.semidefinite.linear = 1;
case 2
problem.constraint.inequalities.elementwise.linear = 1;
case 3
problem.constraint.equalities.linear = 1;
case {4,54}
problem.constraint.inequalities.secondordercone.linear = 1;
case 5
problem.constraint.inequalities.rotatedsecondordercone.linear = 1;
case 20
problem.constraint.inequalities.powercone = 1;
otherwise
error('Report bug in problem classification (linear constraint)');
end
case 2
switch Fi.type
case 1
problem.constraint.inequalities.semidefinite.quadratic = 1;
case 2
% FIX : This should be re-used from
% convertconvexquad
convex = 1;
f = Fi.data;f = f(:);
ii = 1;
while convex & ii<=length(f)
[Q,caux,faux,xaux,info] = quaddecomp(f(ii));
if info | any(eig(full(Q)) > 0)
convex = 0;
end
ii= ii + 1;
end
if convex
problem.constraint.inequalities.elementwise.quadratic.convex = 1;
else
problem.constraint.inequalities.elementwise.quadratic.nonconvex = 1;
end
case 3
problem.constraint.equalities.quadratic = 1;
case {4,54}
problem.constraint.inequalities.secondordercone.nonlinear = 1;
case 5
problem.constraint.inequalities.rotatedsecondordercone.nonlinear = 1;
case 55
problem.constraint.complementarity.nonlinear = 1;
otherwise
error('Report bug in problem classification (quadratic constraint)');
end
otherwise
switch Fi.type
case 1
problem.constraint.inequalities.semidefinite.polynomial = 1;
case 2
problem.constraint.inequalities.elementwise.polynomial = 1;
case 3
problem.constraint.equalities.polynomial = 1;
case {4,54}
problem.constraint.inequalities.secondordercone.nonlinear = 1;
case 5
problem.constraint.inequalities.rotatedsecondordercone.nonlinear = 1;
case 55
problem.constraint.complementarity.nonlinear = 1;
otherwise
error('Report bug in problem classification (polynomial constraint)');
end
end
end
else
switch Fi.type
case 1
problem.constraint.inequalities.semidefinite.linear = 1;
case 2
problem.constraint.inequalities.elementwise.linear = 1;
case 3
problem.constraint.equalities.linear = 1;
case {4,54}
problem.constraint.inequalities.secondordercone.linear = 1;
case 5
problem.constraint.inequalities.rotatedsecondordercone = 1;
case 20
problem.constraint.inequalities.powercone = 1;
case 7
problem.constraint.integer = 1;
case 8
problem.constraint.binary = 1;
case 16
problem.random = 1;
case 21
problem.exponentialcone = 1;
case 50
problem.constraint.sos2 = 1;
case 51
problem.constraint.sos1 = 1;
case 52
problem.constraint.semicont = 1;
case 55
problem.constraint.complementarity.linear = 1;
otherwise
error('Report bug in problem classification (linear constraint)');
end
end
end
end
if int_data
problem.constraint.integer = 1;
end
if bin_data
problem.constraint.binary = 1;
end
if scn_data
problem.constraint.semicont = 1;
end
if ~real_data
problem.complex = 1;
end
if interval_data
problem.interval = 1;
end
if rank_constraint
problem.constraint.inequalities.rank = 1;
end
if ~isempty(uncertain_variables)
problem.uncertain = 1;
end
if (relax==1) | (relax==3)
problem.constraint.equalities.linear = problem.constraint.equalities.linear | problem.constraint.equalities.quadratic | problem.constraint.equalities.polynomial | problem.constraint.equalities.sigmonial;
problem.constraint.equalities.quadratic = 0;
problem.constraint.equalities.polynomial = 0;
problem.constraint.equalities.sigmonial = 0;
problem.constraint.inequalities.elementwise.linear = problem.constraint.inequalities.elementwise.linear | problem.constraint.inequalities.elementwise.quadratic.convex | problem.constraint.inequalities.elementwise.quadratic.nonconvex | problem.constraint.inequalities.elementwise.sigmonial | problem.constraint.inequalities.elementwise.polynomial;
problem.constraint.inequalities.elementwise.quadratic.convex = 0;
problem.constraint.inequalities.elementwise.quadratic.nonconvex = 0;
problem.constraint.inequalities.elementwise.sigmonial = 0;
problem.constraint.inequalities.elementwise.polynomial = 0;
problem.constraint.inequalities.semidefinite.linear = problem.constraint.inequalities.semidefinite.linear | problem.constraint.inequalities.semidefinite.quadratic | problem.constraint.inequalities.semidefinite.polynomial | problem.constraint.inequalities.semidefinite.sigmonial;
problem.constraint.inequalities.semidefinite.quadratic = 0;
problem.constraint.inequalities.semidefinite.polynomial = 0;
problem.constraint.inequalities.semidefinite.sigmonial = 0;
problem.constraint.inequalities.elementwise.secondordercone.linear = problem.constraint.inequalities.secondordercone.linear | problem.constraint.inequalities.secondordercone.nonlinear ;
problem.constraint.inequalities.elementwise.secondordercone.nonlinear = 0;
poly_constraint = 0;
bilin_constraint = 0;
sigm_constraint = 0;
problem.evaluation = 0;
problem.exponentialcone = 0;
end
% Analyse the objective function
quad_info = [];
if isa(h,'sdpvar')
h_is_linear = is(h,'linear');
else
h_is_linear = 0;
end
if (~isempty(h)) & ~h_is_linear &~(relax==1) &~(relax==3)
if ~(isempty(binary_variables) & isempty(integer_variables))
h_var = depends(h);
if any(ismember(h_var,binary_variables))
problem.constraint.binary = 1;
end
if any(ismember(h_var,integer_variables))
problem.constraint.integer = 1;
end
end
if any(ismember(getvariables(h),sigmonial_variables))
problem.objective.sigmonial = 1;
else
[Q,c,f,x,info] = quaddecomp(h);
if ~isreal(Q) % Numerical noise common on imaginary parts
Qr = real(Q);
Qi = imag(Q);
Qr(abs(Qr)<1e-10) = 0;
Qi(abs(Qi)<1e-10) = 0;
cr = real(c);
ci = imag(c);
cr(abs(cr)<1e-10) = 0;
ci(abs(ci)<1e-10) = 0;
Q = Qr + sqrt(-1)*Qi;
c = cr + sqrt(-1)*ci;
end
if info==0
% OK, we have some kind of quadratic expression
% Find involved variables
if all(nonzeros(Q)>=0)
problem.objective.quadratic.nonnegative = 1;
else
problem.objective.quadratic.nonnegative = 0;
end
index = find(any(Q,2));
if length(index) < length(Q)
Qsub = Q(index,index);
[Rsub,p]=chol(Qsub);
if p
% Maybe just some silly numerics
[Rsub,p]=chol(Qsub+1e-12*eye(length(Qsub)));
end
if p==0
[i,j,k] = find(Rsub);
R = sparse((i),index(j),k,length(Qsub),length(Q));
% R = Q*0;
% R(index,index) = Rsub;
else
R = [];
end
else
[R,p]=chol(Q);
end
if p~=0
R = [];
if any(~diag(Q) & any(triu(Q,1),2))
% Diagonal zero but non-zero outside, cannot be convex
else
Q = full(Q);
if min(eig(Q))>=-1e-10
p=0;
try
[U,S,V]=svd(Q);
catch
[U,S,V]=svd(full(Q));
end
i = find(diag(S)>1e-10);
R = sqrt(S(1:max(i),1:max(i)))*V(:,1:max(i))';
end
end
end
if p==0
problem.objective.quadratic.convex = 1;
else
problem.objective.quadratic.nonconvex = 1;
end
quad_info.Q = Q;
quad_info.c = c;
quad_info.f = f;
quad_info.x = x;
quad_info.R = R;
quad_info.p = p;
else
problem.objective.polynomial = 1;
end
end
else
problem.objective.linear = ~isempty(h);
end
if (relax==1) | (relax==2)
problem.constraint.integer = 0;
problem.constraint.binary = 0;
problem.constraint.sos2 = 0;
problem.constraint.semicont = 0;
int_data = 0;
bin_data = 0;
scn_data = 0;
end
function p = multipletermsInEquality(Fi);
p = 0;
Fi = sdpvar(Fi.data);
if length(getvariables(Fi))>1
B = getbase(Fi);
if ~isreal(B)
B = [real(B);imag(B)];
end
p = any(sum(B | B,2)-(B(:,1) == 0) > 1);
end