Dynamic-Calibration/utils/YALMIP-master/operators/plog.m

99 lines
2.3 KiB
Matlab
Executable File

function varargout = plog(varargin)
%PLOG
%
% y = PLOG(x)
%
% Computes concave perspective log, x(1)*log(x(2)/x(1)) on x>0
%
% Implemented as evalutation based nonlinear operator. Hence, the concavity
% of this function is exploited to perform convexity analysis and rigorous
% modelling.
switch class(varargin{1})
case 'double'
if ~isequal(prod(size(varargin{1})),2)
error('PLOG only defined for 2x1 arguments');
end
x = varargin{1};
% Safe version with defined negative values (helps fmincon when
% outside feasible region)
if isequal(x(1),[0])
varargout{1} = 0;
else
varargout{1} = x(1)*log(x(2)/x(1));
end
case 'sdpvar'
if ~isequal(prod(size(varargin{1})),2)
error('PLOG only defined for 2x1 arguments');
else
varargout{1} = yalmip('define',mfilename,varargin{1});
end
case 'char'
X = varargin{3};
operator = struct('convexity','concave','monotonicity','none','definiteness','none','model','callback');
operator.range = [-inf inf];
operator.domain = [0 inf];
operator.bounds = @bounds;
operator.convexhull = @convexhull;
operator.derivative = @derivative;
varargout{1} = [];
varargout{2} = operator;
varargout{3} = X;
otherwise
error('SDPVAR/PLOG called with CHAR argument?');
end
function dp = derivative(x)
z = x(2)/x(1);
dp = [log(z)-1;1./z];
function [L,U] = bounds(xL,xU)
xU(isinf(xU)) = 1e12;
x1 = xL(1)*log(xL(2)/xL(1));
x2 = xU(1)*log(xU(2)/xU(1));
x3 = xL(1)*log(xU(2)/xL(1));
x4 = xU(1)*log(xL(2)/xU(1));
L = min([x1 x2 x3 x4]);
% Stationary in x1 when x1 = x2*exp(-1)
% Increasing in x2, so max at border
p1 = [exp(-1)*xU(2);xU(2)];
x5 = p1(1)*log(p1(2)/p1(1));
if x5(1) >= xL(1) && x5(1) <= xU(1)
U = max([x1 x2 x3 x4 x5]);
else
U = max([x1 x2 x3 x4]);
end
function [Ax,Ay,b] = convexhull(xL,xU)
x1 = [xL(1);xL(2)];
x2 = [xU(1);xL(2)];
x3 = [xL(1);xU(2)];
x4 = [xU(1);xU(2)];
x5 = (xL+xU)/2;
f1 = plog(x1);
f2 = plog(x2);
f3 = plog(x3);
f4 = plog(x4);
f5 = plog(x5);
df1 = derivative(x1);
df2 = derivative(x2);
df3 = derivative(x3);
df4 = derivative(x4);
df5 = derivative(x5);
[Ax,Ay,b] = convexhullConcave2D(x1,f1,df1,x2,f2,df2,x3,f3,df3,x4,f4,df4,x5,f5,df5);