90 lines
2.8 KiB
Matlab
Executable File
90 lines
2.8 KiB
Matlab
Executable File
function varargout = cpower(varargin)
|
|
%CPOWER Power of SDPVAR variable with convexity knowledge
|
|
%
|
|
% CPOWER is recommended if your goal is to obtain
|
|
% a convex model, since the function CPOWER is implemented
|
|
% as a so called nonlinear operator. (For p/q ==2 you can
|
|
% however just as well use the overloaded power)
|
|
%
|
|
% t = cpower(x,p/q)
|
|
%
|
|
% For negative p/q, the operator is convex.
|
|
% For positive p/q with p>q, the operator is convex.
|
|
% For positive p/q with p<q, the operator is concave.
|
|
%
|
|
% A domain constraint x>0 is automatically added if
|
|
% p/q not is an even integer.
|
|
%
|
|
% Note, the complexity of generating the conic representation
|
|
% of these variables are O(2^L) where L typically is the
|
|
% smallest integer such that 2^L >= min(p,q)
|
|
|
|
switch class(varargin{1})
|
|
|
|
case 'double'
|
|
varargout{1} = power(varargin{1},varargin{2});
|
|
case 'sdpvar' % Overloaded operator for SDPVAR objects. Pass on args and save them.
|
|
X = varargin{1};
|
|
if isreal(X)
|
|
dim = size(X);
|
|
X = reshape(X,prod(dim),1);
|
|
y = [];
|
|
for i = 1:prod(dim)
|
|
y = [y;yalmip('define',mfilename,extsubsref(X,i),varargin{2})];
|
|
end
|
|
y = reshape(y,dim);
|
|
varargout{1} = y;
|
|
else
|
|
error('CPOWER can only be applied to real vectors.');
|
|
end
|
|
|
|
case 'char' % YALMIP send 'model' when it wants the epigraph or hypograph
|
|
if isequal(varargin{1},'graph')
|
|
t = varargin{2}; % Second arg is the extended operator variable
|
|
X = varargin{3}; % Third arg and above are the args user used when defining t.
|
|
p = varargin{4};
|
|
|
|
if p>0
|
|
[p,q] = rat(abs(p));
|
|
F = pospower(X,t,p,q);
|
|
if p>q
|
|
convexity = 'convex';
|
|
monotonicity = 'increasing';
|
|
else
|
|
convexity = 'concave';
|
|
monotonicity = 'decreasing';
|
|
end
|
|
else
|
|
[p,q] = rat(abs(p));
|
|
F = negpower(X,t,p,q);
|
|
convexity = 'convex';
|
|
monotonicity = 'decreasing';
|
|
end
|
|
|
|
varargout{1} = F;
|
|
varargout{2} = struct('convexity',convexity,'monotonicity',monotonicity,'definiteness','positive','model','graph');
|
|
varargout{3} = X;
|
|
end
|
|
otherwise
|
|
end
|
|
|
|
function F = pospower(x,t,p,q)
|
|
if p>q
|
|
l = ceil(log2(abs(p)));
|
|
r = 2^l-p;
|
|
y = [ones(r,1)*x;ones(q,1)*t;ones(2^l-r-q,1)];
|
|
F = detset(x,y);
|
|
else
|
|
l = ceil(log2(abs(q)));
|
|
y = [ones(p,1)*x;ones(2^l-q,1)*t;ones(q-p,1)];
|
|
F = detset(t,y);
|
|
end
|
|
|
|
function F = negpower(x,t,p,q)
|
|
l = ceil(log2(abs(p+q)));
|
|
p = abs(p);
|
|
q = abs(q);
|
|
y = [ones(2^l-p-q,1);ones(p,1)*x;ones(q,1)*t];
|
|
F = detset(1,y);
|
|
|