Dynamic-Calibration/ur_base_params_QRlgr.m

178 lines
5.6 KiB
Matlab

% ----------------------------------------------------------------------
% In this script QR decomposition is applied to regressor in closed
% form obtained from Lagrange formulation of dynamics.
% ----------------------------------------------------------------------
% Get robot description
run('main_ur.m')
% Seed the random number generator based on the current time
rng('shuffle');
includeMotorDynamics = 1;
% ------------------------------------------------------------------------
% Getting limits on posistion and velocities
% ------------------------------------------------------------------------
q_min = zeros(6,1);
q_max = zeros(6,1);
qd_max = zeros(6,1);
q2d_max = 2*ones(6,1); % it is chosen by us as it is not given in URDF
for i = 1:6
q_min(i) = str2double(ur10.robot.joint{i}.limit.Attributes.lower);
q_max(i) = str2double(ur10.robot.joint{i}.limit.Attributes.upper);
qd_max(i) = str2double(ur10.robot.joint{i}.limit.Attributes.velocity);
end
% -----------------------------------------------------------------------
% Standard dynamics paramters of the robot in symbolic form
% -----------------------------------------------------------------------
m = sym('m%d',[6,1],'real');
hx = sym('h%d_x',[6,1],'real');
hy = sym('h%d_y',[6,1],'real');
hz = sym('h%d_z',[6,1],'real');
ixx = sym('i%d_xx',[6,1],'real');
ixy = sym('i%d_xy',[6,1],'real');
ixz = sym('i%d_xz',[6,1],'real');
iyy = sym('i%d_yy',[6,1],'real');
iyz = sym('i%d_yz',[6,1],'real');
izz = sym('i%d_zz',[6,1],'real');
im = sym('im%d',[6,1],'real');
% Load parameters attached to the end-effector
syms ml hl_x hl_y hl_z il_xx il_xy il_xz il_yy il_yz il_zz real
% Vector of symbolic parameters
for i = 1:6
if includeMotorDynamics
pi_lgr_sym(:,i) = [ixx(i),ixy(i),ixz(i),iyy(i),iyz(i),izz(i),...
hx(i),hy(i),hz(i),m(i),im(i)]';
else
pi_lgr_sym(:,i) = [ixx(i),ixy(i),ixz(i),iyy(i),iyz(i),izz(i),...
hx(i),hy(i),hz(i),m(i)]';
end
end
[nLnkPrms, nLnks] = size(pi_lgr_sym);
pi_lgr_sym = reshape(pi_lgr_sym, [nLnkPrms*nLnks, 1]);
% -----------------------------------------------------------------------
% Find relation between independent columns and dependent columns
% -----------------------------------------------------------------------
% Get observation matrix of identifiable paramters
W = [];
for i = 1:20
q_rnd = q_min + (q_max - q_min).*rand(6,1);
qd_rnd = -qd_max + 2*qd_max.*rand(6,1);
q2d_rnd = -q2d_max + 2*q2d_max.*rand(6,1);
if includeMotorDynamics
Y = regressorWithMotorDynamics(q_rnd,qd_rnd,q2d_rnd);
else
Y = full_regressor_UR10E(q_rnd,qd_rnd,q2d_rnd);
end
W = vertcat(W,Y);
end
% QR decomposition with pivoting: W*E = Q*R
% R is upper triangular matrix
% Q is unitary matrix
% E is permutation matrix
[Q,R,E] = qr(W);
% matrix W has rank bb which is number number of base parameters
bb = rank(W);
% R = [R1 R2;
% 0 0]
% R1 is bbxbb upper triangular and reguar matrix
% R2 is bbx(c-bb) matrix where c is number of standard parameters
R1 = R(1:bb,1:bb);
R2 = R(1:bb,bb+1:end);
beta = R1\R2; % the zero rows of K correspond to independent columns of WP
beta(abs(beta)<sqrt(eps)) = 0; % get rid of numerical errors
% W2 = W1*beta
% Make sure that the relation holds
W1 = W*E(:,1:bb);
W2 = W*E(:,bb+1:end);
if norm(W2 - W1*beta) > 1e-6
fprintf('Found realationship between W1 and W2 is not correct\n');
return
end
% -----------------------------------------------------------------------
% Find base parmaters
% -----------------------------------------------------------------------
pi1 = E(:,1:bb)'*pi_lgr_sym; % independent paramters
pi2 = E(:,bb+1:end)'*pi_lgr_sym; % dependent paramteres
% all of the expressions below are equivalent
pi_lgr_base = pi1 + beta*pi2;
pi_lgr_base2 = [eye(bb) beta]*[pi1;pi2];
pi_lgr_base3 = [eye(bb) beta]*E'*pi_lgr_sym;
% Relationship needed for identifcation using physical feasibility
%{
KG = [eye(bb) beta; zeros(size(W,2)-bb,bb) eye(size(W,2)-bb)];
G = KG*E';
invG = E*[eye(bb) -beta; zeros(size(W,2)-bb,bb) eye(size(W,2)-bb)];
we = G*pi_lgr_sym;
vpa(we,3)
wr = invG*we;
%}
% -----------------------------------------------------------------------
% Validation of obtained mappings
% -----------------------------------------------------------------------
fprintf('Validation of mapping from standard parameters to base ones\n')
if includeMotorDynamics
ur10.pi(end+1,:) = rand(1,nLnks);
ur10.pi = reshape(ur10.pi,[nLnkPrms*nLnks, 1]);
else
ur10.pi = reshape(ur10.pi,[nLnkPrms*nLnks, 1]);
end
% On random positions, velocities, aceeleations
for i = 1:100
q_rnd = q_min + (q_max - q_min).*rand(6,1);
qd_rnd = -qd_max + 2*qd_max.*rand(6,1);
q2d_rnd = -q2d_max + 2*q2d_max.*rand(6,1);
if includeMotorDynamics
Yi = regressorWithMotorDynamics(q_rnd,qd_rnd,q2d_rnd);
else
Yi = full_regressor_UR10E(q_rnd,qd_rnd,q2d_rnd);
end
tau_full = Yi*ur10.pi;
pi_lgr_base = [eye(bb) beta]*E'*ur10.pi;
Y_base = Yi*E(:,1:bb);
tau_base = Y_base*pi_lgr_base;
nrm_err1(i) = norm(tau_full - tau_base);
end
figure
plot(nrm_err1)
ylabel('||\tau - \tau_b||')
grid on
if ~all(nrm_err1<1e-6)
fprintf('Validation failed')
return
end
% ---------------------------------------------------------------------
% Create structure with the result of QR decompositon and save it
% for further use.
% ---------------------------------------------------------------------
baseQR = struct;
baseQR.numberOfBaseParameters = bb;
baseQR.permutationMatrix = E;
baseQR.beta = beta;
baseQR.motorDynamicsIncluded = includeMotorDynamics;
filename = 'baseQR.mat';
save(filename,'baseQR')