Dynamic-Calibration/utils/YALMIP-master/modules/sos/compilesos.m

565 lines
21 KiB
Matlab
Executable File

function [F,obj,m,everything] = compilesos(F,obj,options,params,candidateMonomials)
%COMPILESOS Derive sum-of-squares model without solving
%
% [F,obj,m] = compilesos(F,h,options,params,monomials) compiles the SOS
% problem (i.e., derives the SDP model) without actually solving it
%
% Inputs
% F : The model involving SOS constraints
% h : Objective function (function of params) [optional]
% options : SDPSETTINGS structure [optional]
% params : Parametric variables in model [optional]
% monomials : Prespecified monomials to be used [optional]
%
% Outputs
% F : Constraints defining the problem
% h : Objective function
% m : Monomials used in the decomposition
%
% NOTE: If you use compilesos together with optimizer to solve many sos
% problems repeatedly, you must set sos.model option to 2. This is done
% automatically if you define a sos problem directly through optimizer,
% thus bypassing compilesos.
%
% See also OPTIMIZE, SOS, OPTIMIZER
% ************************************************
%% Check #inputs
% ************************************************
if nargin<5
candidateMonomials = [];
if nargin<4
params = [];
if nargin<3
options = sdpsettings;
if nargin<2
obj = [];
if nargin<1
help solvesos
return
end
end
end
end
end
if isa(obj,'double')
obj = [];
end
if isempty(options)
options = sdpsettings;
end
if ~isempty(options)
if options.sos.numblkdg
error('Does not make sense to ask for numerical block diagonalization when compiling model');
return
end
end
% Lazy syntax (not official...)
if nargin==1 & isa(F,'sdpvar')
F = (sos(F));
end
% Default return structure
everything.p = [];
everything.sizep = [];
everything.normp = [];
everything.BlockedA = [];
everything.Blockedb = [];
everything.BlockedN = [];
everything.Blockedx = [];
everything.Blockedvarchange = [];
everything.BlockedQ = [];
everything.ranks = [];
everything.ParametricVariables = [];
everything.UncertainData = [];
everything.sol.problem = 0;
% *************************************************************************
%% Extract all SOS constraints and candidate monomials
% *************************************************************************
if ~any(is(F,'sos'))
error('At-least one constraint should be an SOS constraints!');
end
p = [];
ranks = [];
for i = 1:length(F)
if is(F(i),'sos')
pi = sdpvar(F(i));
p{end+1} = pi;
ranks(end+1) = getsosrank(pi); % Desired rank : Experimental code
end
end
if isempty(candidateMonomials)
for i = 1:length(F)
candidateMonomials{i}=[];
end
elseif isa(candidateMonomials,'sdpvar')
cM=candidateMonomials;
candidateMonomials={};
for i = 1:length(p)
candidateMonomials{i}=cM;
end
elseif isa(candidateMonomials,'cell')
if length(p)~=length(candidateMonomials)
error('Dimension mismatch between the candidate monomials and the number of SOS constraints');
end
end
% *************************************************************************
%% Get the parametric constraints
% *************************************************************************
F_original = F;
F_parametric = F(find(~is(F,'sos')));
if isempty(F_parametric)
F_parametric = ([]);
end
% *************************************************************************
%% Expand the parametric constraints
% *************************************************************************
if ~isempty(yalmip('extvariables'))
[F_parametric,failure] = expandmodel(F_parametric,obj,options);
F_parametric = expanded(F_parametric,1);
obj = expanded(obj,1);
if failure
error('Could not expand the model');
end
end
if ~isempty(params)
if ~isa(params,'sdpvar')
error('Fourth argment should be a SDPVAR variable or empty')
end
end
% *************************************************************************
% Collect all possible parametric variables
% *************************************************************************
ParametricVariables = uniquestripped([depends(obj) depends(F_parametric) depends(params)]);
if any(find(is(F_parametric,'parametric')))
F_parametric(find(is(F_parametric,'parametric')))=[];
end
if any(find(is(F,'parametric')))
F(find(is(F,'parametric')))=[];
end
if options.verbose>0;
disp('-------------------------------------------------------------------------');
disp('YALMIP SOS module started...');
disp('-------------------------------------------------------------------------');
end
% *************************************************************************
%% INITIALIZE SOS-DECOMPOSITIONS SDP CONSTRAINTS
% *************************************************************************
F_sos = ([]);
% *************************************************************************
%% FIGURE OUT ALL USED PARAMETRIC VARIABLES
% *************************************************************************
AllVariables = uniquestripped([depends(obj) depends(F_original) depends(F_parametric)]);
ParametricVariables = intersect(ParametricVariables,AllVariables);
MonomVariables = setdiff(AllVariables,ParametricVariables);
params = recover(ParametricVariables);
if isempty(MonomVariables)
error('No independent variables? Perhaps you added a constraint (p(x)) when you meant (sos(p(x))). It could also be that you added a constraint directly in the independents, such as p(x)>=0 or similarily.');
end
if options.verbose>0;disp(['Detected ' num2str(length(ParametricVariables)) ' parametric variables and ' num2str(length(MonomVariables)) ' independent variables.']);end
% ************************************************
%% ANY BMI STUFF
% ************************************************
NonLinearParameterization = 0;
if ~isempty(ParametricVariables)
monomtable = yalmip('monomtable');
ParametricMonomials = monomtable(uniquestripped([getvariables(obj) getvariables(F_original)]),ParametricVariables);
if any(sum(abs(ParametricMonomials),2)>1)
NonLinearParameterization = 1;
end
end
% ************************************************
%% ANY INTEGER DATA
% ************************************************
IntegerData = 0;
if ~isempty(ParametricVariables)
globalInteger = [yalmip('binvariables') yalmip('intvariables')];
integerVariables = getvariables(F_parametric(find(is(F_parametric,'binary') | is(F_parametric,'integer'))));
integerVariables = [integerVariables intersect(ParametricVariables,globalInteger)];
integerVariables = intersect(integerVariables,ParametricVariables);
IntegerData = ~isempty(integerVariables);
end
% ************************************************
%% ANY UNCERTAIN DATA
% ************************************************
UncertainData = 0;
if ~isempty(ParametricVariables)
UncertainData = any(is(F_parametric,'uncertain'));
end
% ************************************************
%% DISPLAY WHAT WE FOUND
% ************************************************
if options.verbose>0 & ~isempty(F_parametric)
nLP = 0;
nEQ = 0;
nLMI = sum(full(is(F_parametric,'lmi')) & full(~is(F_parametric,'element-wise'))); %FULL due to bug in ML 7.0.1
for i = 1:length(F_parametric)
if is(F_parametric,'element-wise')
nLP = nLP + prod(size(F_parametric(i)));
end
if is(F_parametric,'equality')
nEQ = nEQ + prod(size(F_parametric(i)));
end
end
disp(['Detected ' num2str(full(nLP)) ' linear inequalities, ' num2str(full(nEQ)) ' equality constraints and ' num2str(full(nLMI)) ' LMIs.']);
end
% ************************************************
%% IMAGE OR KERNEL REPRESENTATION?
% ************************************************
noRANK = all(isinf(ranks));
options = selectSOSmodel(F,options,NonLinearParameterization,noRANK,IntegerData,UncertainData);
switch options.sos.model
case 'auto'
options.sos.model = 1;
case 'kernel'
options.sos.model = 1;
case 'image'
options.sos.model = 2;
otherwise
end
if ~isempty(yalmip('extvariables')) & options.sos.model == 2 & nargin<4
disp(' ')
disp('**Using nonlinear operators in SOS problems can cause problems.')
disp('**Please specify all parametric variables using the fourth argument');
disp(' ');
end
% ************************************************
%% SKIP DIAGONAL INCONSISTENCY FOR PARAMETRIC MODEL
% ************************************************
if ~isempty(params) & options.sos.inconsistent
if options.verbose>0;disp('Turning off inconsistency based reduction (not supported in parametric models).');end
options.sos.inconsistent = 0;
end
% ************************************************
%% INITIALIZE OBJECTIVE
% ************************************************
if ~isempty(obj)
options.sos.traceobj = 0;
end
parobj = obj;
obj = [];
% ************************************************
%% SCALE SOS CONSTRAINTS
% ************************************************
if options.sos.scale
for constraint = 1:length(p)
normp(constraint) = sqrt(norm(full(getbase(p{constraint}))));
p{constraint} = p{constraint}/normp(constraint);
sizep(constraint) = size(p{constraint},1);
end
else
normp = ones(length(p),1);
end
% ************************************************
%% Some stuff not supported for
% matrix valued SOS yet, turn off for safety
% ************************************************
for constraint = 1:length(p)
sizep(constraint) = size(p{constraint},1);
end
if any(sizep>1)
options.sos.postprocess = 0;
options.sos.reuse = 0;
end
% ************************************************
%% SKIP CONGRUENCE REDUCTION WHEN SOS-RANK
% ************************************************
if ~all(isinf(ranks))
options.sos.congruence = 0;
end
% ************************************************
%% Create an LP model to speed up things in Newton
% polytope reduction
% ************************************************
if options.sos.newton
temp=sdpvar(1,1);
tempops = options;
tempops.solver = 'cdd,glpk,*'; % CDD is generally robust on these problems
tempops.verbose = 0;
tempops.saveduals = 0;
tempops.usex0 = 0;
[aux1,aux2,aux3,LPmodel] = export((temp>=0),temp,tempops);
else
LPmodel = [];
end
% ************************************************
%% LOOP THROUGH ALL SOS CONSTRAINTS
% ************************************************
for constraint = 1:length(p)
% *********************************************
%% FIND THE VARIABLES IN p, SORT, UNIQUE ETC
% *********************************************
if options.verbose>1;disp(['Creating SOS-description ' num2str(constraint) '/' num2str(length(p)) ]);end
pVariables = depends(p{constraint});
AllVariables = uniquestripped([pVariables ParametricVariables]);
MonomVariables = setdiff1D(pVariables,ParametricVariables);
x = recover(MonomVariables);
z = recover(AllVariables);
MonomIndicies = find(ismember(AllVariables,MonomVariables));
ParametricIndicies = find(ismember(AllVariables,ParametricVariables));
if isempty(MonomIndicies)
% This is the case (sos(t)) where t is a parametric (matrix) variable
% This used to create an error message befgore to avoid some silly
% bug in the model generation. Creating this error message is
% stupid, but at the same time I can not remember where the bug was
% and I have no regression test for this case. To avoid
% introducing same bug again by mistake, I create all data
% specifically for this case
previous_exponent_p_monoms = [];%exponent_p_monoms;
n = length(p{constraint});
A_basis = getbase(sdpvar(n,n,'full'));d = find(triu(ones(n)));A_basis = A_basis(d,2:end);
BlockedA{constraint} = {A_basis};
Blockedb{constraint} = p{constraint}(d);
BlockedN{constraint} = {zeros(1,0)};
Blockedx{constraint} = x;
Blockedvarchange{constraint}=zeros(1,0);
continue
% error('You have constraints of the type (sos(f(parametric_variables))). Please use (f(parametric_variables) > 0) instead')
end
% *********************************************
%% Express p in monimials and coefficients
% *********************************************
[exponent_p,p_base] = getexponentbase(p{constraint},z);
% *********************************************
%% Powers for user defined candidate monomials
% (still experimental)
% *********************************************
if ~all(cellfun('isempty',candidateMonomials))
exponent_c = [];
if isa(candidateMonomials{constraint},'cell')
for i = 1:length(candidateMonomials{constraint})
exponent_c{i} = getexponentbase(candidateMonomials{constraint}{i},z);
exponent_c{i} = exponent_c{i}(:,MonomIndicies);
end
else
exponent_c{1} = getexponentbase(candidateMonomials{constraint},z);
exponent_c{1} = exponent_c{1}(:,MonomIndicies);
end
else
exponent_c = [];
end
% *********************************************
%% STUPID PROBLEM WITH ODD HIGHEST POWER?...
% *********************************************
if isempty(ParametricIndicies)
max_degrees = max(exponent_p(:,MonomIndicies),[],1);
bad_max = any(max_degrees-fix((max_degrees/2))*2);
if bad_max
for i = 1:length(p)
Q{i}=[];
m{i}=[];
end
residuals=[];
everything = [];
sol.yalmiptime = 0;
sol.solvertime = 0;
sol.info = yalmiperror(1,'YALMIP');
sol.problem = 2;
everything.sol = sol;
return
end
end
% *********************************************
%% Can we make a smart variable change (no code)
% *********************************************
exponent_p_monoms = exponent_p(:,MonomIndicies);
varchange = ones(1,size(MonomIndicies,2));
% *********************************************
%% Unique monoms (copies due to parametric terms)
% *********************************************
exponent_p_monoms = uniquesafe(exponent_p_monoms,'rows');
if options.sos.reuse & constraint > 1 && isequal(previous_exponent_p_monoms,exponent_p_monoms)
% We don't have to do anything, candidate monomials can be-used
if options.verbose>1;disp(['Re-using all candidate monomials (same problem structure)']);end
else
% *********************************************
% User has supplied the whole candidate structure
% Don't process this
% *********************************************
if ~isempty(exponent_c)
exponent_m{1} = [];
N = {};
for i = 1:length(exponent_c)
exponent_m{i} = [exponent_m{1};exponent_c{i}];
N{i,1} = exponent_c{i};
end
else
% *********************************************
%% CORRELATIVE SPARSITY PATTERN
% *********************************************
[C,csclasses] = corrsparsity(exponent_p_monoms,options);
% *********************************************
%% GENERATE MONOMIALS
% *********************************************
exponent_m = monomialgeneration(exponent_p_monoms,csclasses);
% *********************************************
%% REDUCE #of MONOMIALS
% *********************************************
% Fix for matrix case, perform newton w.r.t
% diagonal polynomials only. This can be
% improved, but for now, keep it simple...
n = length(p{constraint});diag_elements = 1:(n+1):n^2;used_diagonal = find(any(p_base(diag_elements,:),1));
exponent_p_monoms_diag = exponent_p(used_diagonal,MonomIndicies);
exponent_m = monomialreduction(exponent_m,exponent_p_monoms_diag,options,csclasses,LPmodel);
% *********************************************
%% BLOCK PARTITION THE MONOMIALS BY CONGRUENCE
% *********************************************
N = congruenceblocks(exponent_m,exponent_p_monoms,options,csclasses);
% *********************************************
%% REDUCE FURTHER BY EXPLOITING BLOCK-STRUCTURE
% *********************************************
N = blockmonomialreduction(exponent_p_monoms_diag,N,options);
end
% *********************************************
%% PREPARE FOR SDP FORMULATION BY CALCULATING ALL
% POSSIBLE MONOMIAL PRODUCS IN EACH BLOCK
% *********************************************
[exponent_m2,N_unique] = monomialproducts(N);
% *********************************************
%% CHECK FOR BUG/IDIOT PROBLEMS IN FIXED PROBLEM
% *********************************************
if isempty(ParametricIndicies)
if ~isempty(setdiff(exponent_p_monoms,N_unique(:,3:end),'rows'))
for i = 1:length(p)
Q{i} = [];
m{i} = [];
end
residuals = [];everything = [];
sol.problem = 2;
sol.info = yalmiperror(1,'YALMIP');
warning('Problem is trivially infeasible (odd highest power?)');
return
end
end
end
previous_exponent_p_monoms = exponent_p_monoms;
% *********************************************
%% GENERATE DATA FOR SDP FORMULATIONS
% *********************************************
p_base_parametric = [];
n = length(p{constraint});
for i=1:length(p{constraint})
for j = 1:length(p{constraint})
p_base_parametric = [p_base_parametric parameterizedbase(p{constraint}(i,j),z,params,ParametricIndicies,exponent_p,p_base((i-1)*n+j,:))];
end
end
[BlockedA{constraint},Blockedb{constraint}] = generate_kernel_representation_data(N,N_unique,exponent_m2,exponent_p,p{constraint},options,p_base_parametric,ParametricIndicies,MonomIndicies,constraint==1);
% SAVE FOR LATER
BlockedN{constraint} = N;
Blockedx{constraint} = x;
Blockedvarchange{constraint}=varchange;
end
% *********************************************
%% And now get the SDP formulations
%
% The code above has generated matrices A and b
% in AQ == b(parametric)
%
% We use these to generate kernel or image models
% *********************************************
sol.problem = 0;
BlockedQ = [];
switch options.sos.model
case 1
% Kernel model
[F,obj,BlockedQ,Primal_matrices,Free_variables] = create_kernelmodel(BlockedA,Blockedb,F_parametric,parobj,options,[]);
case {2,4,5,6}
% 2=Image model, 4=reduced nonlinear, 5=dd,6=sd
[F,obj,BlockedQ,sol] = create_imagemodel(BlockedA,Blockedb,F_parametric,parobj,options);
case 3
% Un-official model to solve bilinearly parameterized SOS using SDPLR
[F,obj,options] = create_lrmodel(BlockedA,Blockedb,F_parametric,parobj,options,ParametricVariables);
otherwise
end
for constraint = 1:length(p)
if constraint > 1 && isequal(BlockedN{constraint},BlockedN{constraint-1}) && isequal(Blockedx{constraint},Blockedx{constraint-1}) && isequal(Blockedvarchange{constraint},Blockedvarchange{constraint-1}) && isequal(sizep(constraint),sizep(constraint-1))
monoms{constraint} = monoms{constraint-1};
else
monoms{constraint} = [];
totalN{constraint} = [];
N = BlockedN{constraint};
x = Blockedx{constraint};
for i = 1:length(N)
% Original variable
for j = 1:size(N{i},1)
N{i}(j,:)=N{i}(j,:).*Blockedvarchange{constraint};
end
if isempty(N{i})
monoms{constraint} = [monoms{constraint};[]];
else
mi = kron(eye(sizep(constraint)),recovermonoms(N{i},x));
monoms{constraint} = [monoms{constraint};mi];
end
end
if isempty(monoms{constraint})
monoms{constraint}=1;
end
end
end
m = monoms;
everything.p = p;
everything.sizep = sizep;
everything.normp = normp;
everything.BlockedA = BlockedA;
everything.Blockedb = Blockedb;
everything.BlockedN = BlockedN;
everything.Blockedx = Blockedx;
everything.Blockedvarchange = Blockedvarchange;
everything.BlockedQ = BlockedQ;
everything.ranks = ranks;
everything.ParametricVariables = ParametricVariables;
everything.UncertainData = UncertainData;
everything.sol = sol;