73 lines
1.4 KiB
Matlab
Executable File
73 lines
1.4 KiB
Matlab
Executable File
function deg=degree(p,y,e)
|
|
%DEGREE Polynomial degree
|
|
%
|
|
% DEG = DEGREE(p,x,e)
|
|
%
|
|
% p : SDPVAR object.
|
|
% x : Degree w.r.t linear SDPVAR objects, can be [].
|
|
|
|
|
|
% e : If e=1, returns degree of each element in p
|
|
%
|
|
% Examples
|
|
% x1 = sdpvar(1,1);x2 = sdpvar(1,1);
|
|
% p = [x1;x1*x2+x2^2];
|
|
%
|
|
% degree(p) returns 2
|
|
%
|
|
% degree(p,x1) returns 1
|
|
%
|
|
% degree(p,[x1 x2]) returns [1 2]
|
|
%
|
|
% degree(p,[x1 x2],1) returns [1 0;1 2]
|
|
%
|
|
% degree(p,[],1) returns [1;3]
|
|
|
|
if isa(p,'double')
|
|
if nargin==1
|
|
deg = 0;
|
|
else
|
|
deg = zeros(1,length(y));
|
|
end
|
|
return
|
|
end
|
|
|
|
if nargin<2
|
|
y = recover(depends(p));
|
|
end
|
|
|
|
if nargin<3 | (nargin==3 & e==0)
|
|
exponent_p = exponents(p,y);
|
|
switch nargin
|
|
case 1
|
|
deg = full(max(sum(exponent_p,2)));
|
|
case {2,3}
|
|
deg = full(max(exponent_p,[],1));
|
|
otherwise
|
|
error('Too many arguments. Wadda ya mean?')
|
|
end
|
|
else
|
|
p = p(:);
|
|
if isempty(y)
|
|
yy = recover(depends(p));
|
|
else
|
|
yy = y;
|
|
end
|
|
|
|
for i = 1:length(p)
|
|
z.type = '()';
|
|
z.subs{1} = i;
|
|
exponent_p = exponents(subsref(p,z),yy);
|
|
switch nargin
|
|
case 1
|
|
deg(i,:) = full(max(sum(exponent_p,2)));
|
|
case {2,3}
|
|
deg(i,:) = full(max(exponent_p,[],1));
|
|
otherwise
|
|
error('Too many arguments. Wadda ya mean?')
|
|
end
|
|
end
|
|
if isempty(y)
|
|
deg = sum(deg,2);
|
|
end
|
|
end |