Dynamic-Calibration/ur_idntfcn_real.m

228 lines
8.4 KiB
Matlab

clc; clear all; close all;
% ------------------------------------------------------------------------
% Load data and procces it (filter and estimate accelerations)
% ------------------------------------------------------------------------
% idntfcnTrjctry = parseURData('ur-19_12_23_free.csv', 1, 2005);
% idntfcnTrjctry = parseURData('ur-20_01_31-unload.csv', 300, 2623);
% idntfcnTrjctry = parseURData('ur-20_02_06-20sec_5harm.csv', 545, 2417);
% idntfcnTrjctry = parseURData('ur-20_02_10-20sec_7harm.csv', 544, 2500);
% idntfcnTrjctry = parseURData('ur-20_02_05-20sec_8harm.csv', 320, 2310);
% idntfcnTrjctry = parseURData('ur-20_02_06-20sec_10harm.csv', 713, 2800);
% idntfcnTrjctry = parseURData('ur-20_02_05-20sec_12harm.csv', 605, 2710);
% idntfcnTrjctry = parseURData('ur-20_02_10-30sec_12harm.csv', 635, 3510);
% idntfcnTrjctry = parseURData('ur-20_02_12-40sec_12harm.csv', 500, 4460);
% idntfcnTrjctry = parseURData('ur-20_02_12-50sec_12harm.csv', 355, 5090);
% idntfcnTrjctry = filterData(idntfcnTrjctry);
% idntfcnTrjctry{1} = parseURData('ur-19_12_23_free.csv', 1, 2005);
% idntfcnTrjctry{2} = parseURData('ur-20_01_31-unload.csv', 300, 2623);
% idntfcnTrjctry{3} = parseURData('ur-20_02_06-20sec_5harm.csv', 545, 2417);
% idntfcnTrjctry{4} = parseURData('ur-20_02_10-20sec_7harm.csv', 544, 2500);
% idntfcnTrjctry{5} = parseURData('ur-20_02_05-20sec_8harm.csv', 320, 2310);
% idntfcnTrjctry{6} = parseURData('ur-20_02_06-20sec_10harm.csv', 713, 2800);
% idntfcnTrjctry{7} = parseURData('ur-20_02_05-20sec_12harm.csv', 605, 2710);
% idntfcnTrjctry{8} = parseURData('ur-20_02_10-30sec_12harm.csv', 635, 3510);
% idntfcnTrjctry{9} = parseURData('ur-20_02_12-40sec_12harm.csv', 500, 4460);
% idntfcnTrjctry{10} = parseURData('ur-20_02_12-50sec_12harm.csv', 355, 5090);
idntfcnTrjctry{1} = parseURData('ur-20_02_10-30sec_12harm.csv', 635, 3510);
for i = 1:length(idntfcnTrjctry)
idntfcnTrjctry{i} = filterData(idntfcnTrjctry{i});
end
%{
idntfcnTrjctry{1} = parseURData('ur-20_02_10-30sec_12harm.csv', 635, 3510);
idntfcnTrjctry{2} = parseURData('ur-20_02_12-40sec_12harm.csv', 500, 4460);
idntfcnTrjctry{3} = parseURData('ur-20_02_12-50sec_12harm.csv', 355, 5090);
idntfcnTrjctry{1} = filterData(idntfcnTrjctry{1});
idntfcnTrjctry{2} = filterData(idntfcnTrjctry{2});
idntfcnTrjctry{3} = filterData(idntfcnTrjctry{3});
idntfcnTrjctry{4}.t = [idntfcnTrjctry{1}.t;...
idntfcnTrjctry{1}.t(end) + idntfcnTrjctry{2}.t;...
idntfcnTrjctry{1}.t(end) + idntfcnTrjctry{2}.t(end) + idntfcnTrjctry{3}.t];
idntfcnTrjctry{4}.q = [idntfcnTrjctry{1}.q;
idntfcnTrjctry{2}.q;
idntfcnTrjctry{3}.q];
idntfcnTrjctry{4}.qd_fltrd = [idntfcnTrjctry{1}.qd_fltrd;
idntfcnTrjctry{2}.qd_fltrd;
idntfcnTrjctry{3}.qd_fltrd];
idntfcnTrjctry{4}.q2d_est = [idntfcnTrjctry{1}.q2d_est;
idntfcnTrjctry{2}.q2d_est;
idntfcnTrjctry{3}.q2d_est];
idntfcnTrjctry{4}.i_fltrd = [idntfcnTrjctry{1}.i_fltrd;
idntfcnTrjctry{2}.i_fltrd;
idntfcnTrjctry{3}.i_fltrd];
%}
% -------------------------------------------------------------------
% Generate Regressors based on data
% ------------------------------------------------------------------------
% Load matrices that map standard set of paratmers to base parameters
% load('full2base_mapping.mat');
load('baseQR.mat'); % load mapping from full parameters to base parameters
% load identified drive gains
load('driveGains.mat')
drvGains2 = [14.87; 13.26; 11.13; 10.62; 11.03; 11.47]; % deLuca gains
Tau = {}; Wb = {};
for i = 1:length(idntfcnTrjctry)
[Tau{i}, Wb{i}] = buildObservationMatrices(idntfcnTrjctry{i}, baseQR, drvGains);
[Tau{i+1}, Wb{i+1}] = buildObservationMatrices(idntfcnTrjctry{i}, baseQR, drvGains2);
end
% Usual least squares
for i = 1:length(idntfcnTrjctry)
[pib_OLS(:,i), pifrctn_OLS(:,i)] = ordinaryLeastSquareEstimation(Tau{i}, Wb{i});
[pib_OLS(:,i+1), pifrctn_OLS(:,i+1)] = ordinaryLeastSquareEstimation(Tau{i+1}, Wb{i+1});
end
% Set-up SDP optimization procedure
for i = 1:length(idntfcnTrjctry)
[pib_SDP(:,i), pifrctn_SDP(:,i)] = physicallyConsistentEstimation(Tau{i}, Wb{i}, baseQR);
[pib_SDP(:,i+1), pifrctn_SDP(:,i+1)] = physicallyConsistentEstimation(Tau{i+1}, Wb{i+1}, baseQR);
end
return
%
%% Saving identified parameters
pi_full = baseQR.permutationMatrix*[eye(baseQR.numberOfBaseParameters), ...
-baseQR.beta; ...
zeros(26,baseQR.numberOfBaseParameters), ...
eye(26) ]*[value(pi_b); value(pi_d)];
t1 = reshape(pi_full, [11, 6]);
identifiedUR10E = struct;
identifiedUR10E.baseParameters = pi_b;
identifiedUR10E.standardParameters = pi_full;
identifiedUR10E.linearFrictionParameters = pi_frctn;
%% Statisitical analysis
% unbiased estimation of the standard deviation
sqrd_sgma_e = norm(Tau_uldd - Wb_uldd*[pi_b; pi_frctn], 2)^2/...
(size(Wb_uldd, 1) - size(Wb_uldd, 2));
% the covariance matrix of the estimation error
Cpi = sqrd_sgma_e*inv(Wb_uldd'*Wb_uldd);
sgma_pi = sqrt(diag(Cpi));
% relative standard deviation
sgma_pi_rltv = sgma_pi./abs([pi_b; pi_frctn]);
%% Functions
function [Tau, Wb] = buildObservationMatrices(idntfcnTrjctry, baseQR, drvGains)
% --------------------------------------------------------------------
% The function builds observation matrix for UR10E
% --------------------------------------------------------------------
E1 = baseQR.permutationMatrix(:,1:baseQR.numberOfBaseParameters);
Wb = []; Tau = [];
for i = 1:1:length(idntfcnTrjctry.t)
Yi = regressorWithMotorDynamics(idntfcnTrjctry.q(i,:)',...
idntfcnTrjctry.qd_fltrd(i,:)',...
idntfcnTrjctry.q2d_est(i,:)');
Yfrctni = frictionRegressor(idntfcnTrjctry.qd_fltrd(i,:)');
Ybi = [Yi*E1, Yfrctni];
Wb = vertcat(Wb, Ybi);
Tau = vertcat(Tau, diag(drvGains)*idntfcnTrjctry.i_fltrd(i,:)');
end
end
function [pib_OLS, pifrctn_OLS] = ordinaryLeastSquareEstimation(Tau, Wb)
pi_OLS = (Wb'*Wb)\(Wb'*Tau);
pib_OLS = pi_OLS(1:40); % variables for base paramters
pifrctn_OLS = pi_OLS(41:end);
end
function [pib_SDP, pifrctn_SDP] = physicallyConsistentEstimation(Tau, Wb, baseQR)
physicalConsistency = 1;
pi_frctn = sdpvar(18,1); % variables for dependent parameters
pi_b = sdpvar(baseQR.numberOfBaseParameters,1); % variables for base paramters
pi_d = sdpvar(26,1); % variables for dependent paramters
% Bijective mapping from [pi_b; pi_d] to standard parameters pi
pii = baseQR.permutationMatrix*[eye(baseQR.numberOfBaseParameters), ...
-baseQR.beta; ...
zeros(26,baseQR.numberOfBaseParameters), ...
eye(26) ]*[pi_b; pi_d];
% Feasibility contrraints of the link paramteres and rotor inertia
mass_indexes = 10:11:66;
massValuesURDF = [7.778 12.93 3.87 1.96 1.96 0.202]';
errorRange = 0.10;
massUpperBound = massValuesURDF*(1 + errorRange);
cnstr = [];
for i = 1:6
cnstr = [cnstr, pii(mass_indexes(i))> 0, ...
pii(mass_indexes(i)) < massUpperBound(i)];
end
if physicalConsistency
for i = 1:11:66
link_inertia_i = [pii(i), pii(i+1), pii(i+2); ...
pii(i+1), pii(i+3), pii(i+4); ...
pii(i+2), pii(i+4), pii(i+5)];
frst_mmnt_i = pii(i+6:i+8);
Di = [0.5*trace(link_inertia_i)*eye(3) - link_inertia_i, ...
frst_mmnt_i; frst_mmnt_i', pii(i+9)];
cnstr = [cnstr, Di>0, pii(i+10)>0];
end
else
for i = 1:11:66
link_inertia_i = [pii(i), pii(i+1), pii(i+2); ...
pii(i+1), pii(i+3), pii(i+4); ...
pii(i+2), pii(i+4), pii(i+5)];
frst_mmnt_i = vec2skewSymMat(pii(i+6:i+8));
Di = [link_inertia_i, frst_mmnt_i'; frst_mmnt_i, pii(i+9)*eye(3)];
cnstr = [cnstr, Di>0, pii(i+10)>0];
end
end
% Feasibility constraints on the friction prameters
for i = 1:6
cnstr = [cnstr, pi_frctn(3*i-2)>0, pi_frctn(3*i-1)>0];
end
% Defining pbjective function
obj = norm(Tau - Wb*[pi_b; pi_frctn]);
% Solving sdp problem
sol2 = optimize(cnstr, obj, sdpsettings('solver','sdpt3'));
pib_SDP = value(pi_b); % variables for base paramters
pifrctn_SDP = value(pi_frctn);
end