131 lines
4.6 KiB
Matlab
131 lines
4.6 KiB
Matlab
clc; clear all; close all;
|
|
|
|
% ------------------------------------------------------------------------
|
|
% Load data and procces it (filter and estimate accelerations)
|
|
% ------------------------------------------------------------------------
|
|
unloadedTrajectory = parseURData('ur-19_12_23_free.csv', 1, 2005);
|
|
unloadedTrajectory = filterData(unloadedTrajectory);
|
|
|
|
% ------------------------------------------------------------------------
|
|
% Generate Regressors based on data
|
|
% ------------------------------------------------------------------------
|
|
% Load matrices that map standard set of paratmers to base parameters
|
|
% load('full2base_mapping.mat');
|
|
load('baseQR.mat'); % load mapping from full parameters to base parameters
|
|
E1 = baseQR.permutationMatrix(:,1:baseQR.numberOfBaseParameters);
|
|
|
|
% load identified drive gains
|
|
load('driveGains.mat')
|
|
% drvGains = [14.87; 13.26; 11.13; 10.62; 11.03; 11.47]; % deLuca gains
|
|
% drvGains = [11.1272; 11.83; 9.53; 12.64; 10.24; 5.53];
|
|
|
|
|
|
%Constracting regressor matrix
|
|
Wb_uldd = []; Tau_uldd = [];
|
|
for i = 1:2:length(unloadedTrajectory.t)
|
|
Y_ulddi = regressorWithMotorDynamics(unloadedTrajectory.q(i,:)',...
|
|
unloadedTrajectory.qd_fltrd(i,:)',...
|
|
unloadedTrajectory.q2d_est(i,:)');
|
|
Yfrctni = frictionRegressor(unloadedTrajectory.qd_fltrd(i,:)');
|
|
Ybi_uldd = [Y_ulddi*E1, Yfrctni];
|
|
|
|
Wb_uldd = vertcat(Wb_uldd, Ybi_uldd);
|
|
Tau_uldd = vertcat(Tau_uldd, diag(drvGains)*unloadedTrajectory.i_fltrd(i,:)');
|
|
% Tau_uldd = vertcat(Tau_uldd, unloadedTrajectory.tau_des(i,:)');
|
|
end
|
|
|
|
|
|
%% Set-up SDP optimization procedure
|
|
physicalConsistency = 1;
|
|
|
|
pi_frctn = sdpvar(18,1);
|
|
pi_b = sdpvar(baseQR.numberOfBaseParameters,1); % variables for base paramters
|
|
pi_d = sdpvar(26,1); % variables for dependent paramters
|
|
|
|
% Bijective mapping from [pi_b; pi_d] to standard parameters pi
|
|
pii = baseQR.permutationMatrix*[eye(baseQR.numberOfBaseParameters), ...
|
|
-baseQR.beta; ...
|
|
zeros(26,baseQR.numberOfBaseParameters), ...
|
|
eye(26) ]*[pi_b; pi_d];
|
|
|
|
% Feasibility contrraints of the link paramteres and rotor inertia
|
|
mass_indexes = 10:11:66;
|
|
massValuesURDF = [7.778 12.93 3.87 1.96 1.96 0.202]';
|
|
errorRange = 0.25;
|
|
massUpperBound = massValuesURDF*(1 + errorRange);
|
|
massLowerBound = massValuesURDF*(1 - errorRange);
|
|
|
|
cnstr = [];
|
|
for i = 1:6
|
|
cnstr = [cnstr, pii(mass_indexes(i))> massLowerBound(i), ...
|
|
pii(mass_indexes(i)) < massUpperBound(i)];
|
|
|
|
end
|
|
|
|
if physicalConsistency
|
|
for i = 1:11:66
|
|
link_inertia_i = [pii(i), pii(i+1), pii(i+2); ...
|
|
pii(i+1), pii(i+3), pii(i+4); ...
|
|
pii(i+2), pii(i+4), pii(i+5)];
|
|
frst_mmnt_i = pii(i+6:i+8);
|
|
|
|
Di = [0.5*trace(link_inertia_i)*eye(3) - link_inertia_i, ...
|
|
frst_mmnt_i; frst_mmnt_i', pii(i+9)];
|
|
|
|
cnstr = [cnstr, Di>0, pii(i+10)>0, pii(i+9)<15];
|
|
end
|
|
else
|
|
for i = 1:11:66
|
|
link_inertia_i = [pii(i), pii(i+1), pii(i+2); ...
|
|
pii(i+1), pii(i+3), pii(i+4); ...
|
|
pii(i+2), pii(i+4), pii(i+5)];
|
|
|
|
frst_mmnt_i = vec2skewSymMat(pii(i+6:i+8));
|
|
|
|
Di = [link_inertia_i, frst_mmnt_i'; frst_mmnt_i, pii(i+9)*eye(3)];
|
|
cnstr = [cnstr, Di>0, pii(i+10)>0];
|
|
end
|
|
end
|
|
|
|
% Feasibility constraints on the friction prameters
|
|
for i = 1:6
|
|
cnstr = [cnstr, pi_frctn(3*i-2)>0, pi_frctn(3*i-1)>0];
|
|
end
|
|
|
|
% Defining pbjective function
|
|
obj = norm(Tau_uldd - Wb_uldd*[pi_b; pi_frctn]);
|
|
|
|
% Solving sdp problem
|
|
sol2 = optimize(cnstr, obj, sdpsettings('solver','sdpt3'));
|
|
|
|
pi_frctn = value(pi_frctn);
|
|
pi_b = value(pi_b); % variables for base paramters
|
|
|
|
|
|
%% Saving identified parameters
|
|
pi_full = baseQR.permutationMatrix*[eye(baseQR.numberOfBaseParameters), ...
|
|
-baseQR.beta; ...
|
|
zeros(26,baseQR.numberOfBaseParameters), ...
|
|
eye(26) ]*[value(pi_b); value(pi_d)];
|
|
t1 = reshape(pi_full, [11, 6]);
|
|
|
|
identifiedUR10E = struct;
|
|
identifiedUR10E.baseParameters = pi_b;
|
|
identifiedUR10E.standardParameters = pi_full;
|
|
identifiedUR10E.linearFrictionParameters = pi_frctn;
|
|
|
|
|
|
|
|
%% Statisitical analysis
|
|
% unbiased estimation of the standard deviation
|
|
sqrd_sgma_e = norm(Tau_uldd - Wb_uldd*[pi_b; pi_frctn], 2)^2/...
|
|
(size(Wb_uldd, 1) - size(Wb_uldd, 2));
|
|
|
|
% the covariance matrix of the estimation error
|
|
Cpi = sqrd_sgma_e*inv(Wb_uldd'*Wb_uldd);
|
|
sgma_pi = sqrt(diag(Cpi));
|
|
|
|
% relative standard deviation
|
|
sgma_pi_rltv = sgma_pi./abs([pi_b; pi_frctn]);
|
|
|