163 lines
5.8 KiB
Matlab
Executable File
163 lines
5.8 KiB
Matlab
Executable File
%%*******************************************************************
|
|
%% schurmat_sblk: compute Schur complement matrix corresponding to
|
|
%% SDP blocks.
|
|
%%
|
|
%% symm = 0, HKM
|
|
%% = 1, NT
|
|
%%*****************************************************************
|
|
%% SDPT3: version 4.0
|
|
%% Copyright (c) 1997 by
|
|
%% Kim-Chuan Toh, Michael J. Todd, Reha H. Tutuncu
|
|
%% Last Modified: 16 Sep 2004
|
|
%%*****************************************************************
|
|
|
|
function schur = schurmat_sblk(blk,At,par,schur,p,X,Y);
|
|
|
|
global nnzschur nzlistschur
|
|
|
|
iter = par.iter;
|
|
smallblkdim = par.smallblkdim;
|
|
|
|
if isempty(smallblkdim); smallblkdim = 50; end
|
|
if (nargin == 7); symm = 0; else; symm = 1; Y = X; end;
|
|
m = length(schur);
|
|
pblk = blk(p,:);
|
|
if (iter == 1)
|
|
nnzschur(size(blk,1),1) = m*m;
|
|
nzlistschur = cell(size(blk,1),1);
|
|
end
|
|
%%
|
|
if (max(pblk{2}) > smallblkdim)
|
|
%%
|
|
%% compute schur for matrices that are very sparse.
|
|
%%
|
|
m1 = size(At{p,1},2);
|
|
J = min(m1, max(find(par.nzlistA{p,1} < inf))-1);
|
|
if (J > 0)
|
|
if issparse(X{p}) & ~issparse(Y{p}); X{p} = full(X{p}); end
|
|
if ~issparse(X{p}) & issparse(Y{p}); Y{p} = full(Y{p}); end
|
|
idx = max(find(par.nzlistA{p,1} == 0));
|
|
if ~isempty(idx);
|
|
maxnzschur = (m1-idx+1)^2;
|
|
else
|
|
maxnzschur = m1^2;
|
|
end
|
|
if (iter <= 3)
|
|
[schurtmp,nzcount,nzlisttmp] = mexschur_new(pblk,At{p,1},par.nzlistA{p,1},...
|
|
par.nzlistA{p,2},par.permA(p,:),Y{p},X{p},J,symm,maxnzschur);
|
|
nnzschur(p) = nzcount(1);
|
|
if (nnzschur(p) == mexnnz(nzlisttmp))
|
|
nzlistschur{p} = nzlisttmp;
|
|
else
|
|
nzlistschur{p} = [];
|
|
end
|
|
else
|
|
if isempty(nzlistschur{p})
|
|
[schurtmp,nzcount] = mexschur_new(pblk,At{p,1},par.nzlistA{p,1},...
|
|
par.nzlistA{p,2},par.permA(p,:),Y{p},X{p},J,symm,maxnzschur);
|
|
else
|
|
maxnzschur = 2*mexnnz(nzlistschur{p});
|
|
[schurtmp,nzcount] = mexschur_new(pblk,At{p,1},par.nzlistA{p,1},...
|
|
par.nzlistA{p,2},par.permA(p,:),Y{p},X{p},J,symm,maxnzschur,nzlistschur{p});
|
|
end
|
|
end
|
|
schurtmp = [schurtmp(1:nzcount(2),:); m,m,0];
|
|
schur = schur + spconvert(schurtmp);
|
|
end
|
|
%%
|
|
%% compute schur for matrices that are not so sparse or dense.
|
|
%%
|
|
if (m1 < m) %% for low rank constraints
|
|
ss = [0, cumsum(pblk{3})];
|
|
len = sum(pblk{3});
|
|
dd = At{p,3};
|
|
DD = spconvert([dd(:,2:4); len,len,0]);
|
|
XVD = X{p}*At{p,2}*DD;
|
|
YVD = Y{p}*At{p,2}*DD;
|
|
end
|
|
L = max(find(par.nzlistAsum{p,1} < inf)) -1;
|
|
if (J < L)
|
|
len = par.nzlistAsum{p,1}(J+1);
|
|
list = par.nzlistAsum{p,2}(1:len,:);
|
|
end
|
|
if (m1 > 0)
|
|
if (J < 0.8*m)
|
|
schurdense = 1;
|
|
if issparse(schur); schur = full(schur); end;
|
|
else
|
|
schurdense = 0;
|
|
end
|
|
count = 0;
|
|
schurtmp = [];
|
|
for k = J+1:m
|
|
if (k<=m1)
|
|
isspAk = par.isspA(p,k);
|
|
Ak = mexsmat(blk,At,isspAk,p,k);
|
|
if (k <= L)
|
|
idx1 = par.nzlistAsum{p,1}(k)+1; idx2 = par.nzlistAsum{p,1}(k+1);
|
|
list = [list; par.nzlistAsum{p,2}(idx1:idx2,:)];
|
|
list = sortrows(list,[2 1]);
|
|
tmp = Prod3(pblk,X{p},Ak,Y{p},symm,list);
|
|
else
|
|
tmp = Prod3(pblk,X{p},Ak,Y{p},symm);
|
|
end
|
|
else %%--- for low rank constraints
|
|
idx = [ss(k-m1)+1 :ss(k-m1+1)];
|
|
tmp = XVD(:,idx)* (Y{p}*At{p,2}(:,idx))';
|
|
end
|
|
if (~symm)
|
|
tmp = 0.5*(mexsvec(pblk,tmp) + mexsvec(pblk,tmp'));
|
|
else
|
|
tmp = mexsvec(pblk,tmp);
|
|
end
|
|
permk = par.permA(p,k);
|
|
idx = par.permA(p,1:min(k,m1));
|
|
schurcol = mexinprod(blk,At,tmp,min(k,m1),p);
|
|
if (schurdense)
|
|
tmp2 = schur(idx,permk) + schurcol;
|
|
schur(idx,permk) = tmp2;
|
|
schur(permk,idx) = tmp2';
|
|
else
|
|
len = length(idx);
|
|
schurtmp(count+[1:len],:) = [idx,permk*ones(len,1),schurcol];
|
|
count = count+len;
|
|
end
|
|
end
|
|
if (~schurdense) & (count > 0)
|
|
schursub = spconvert([schurtmp; m,m,0]);
|
|
diagschur = diag(schursub);
|
|
schursub = schursub + schursub' - spdiags(diagschur,0,m,m);
|
|
schur = schur + schursub;
|
|
end
|
|
end
|
|
if (m1 < m) %%--- for low rank constraints
|
|
m2 = m - m1;
|
|
XVtmp = XVD'*At{p,2};
|
|
YVtmp = At{p,2}'*YVD;
|
|
for k = 1:m2
|
|
idx0 = [ss(k)+1 : ss(k+1)];
|
|
tmp = XVtmp(:,idx0) .* YVtmp(:,idx0);
|
|
tmp = tmp*ones(length(idx0),1);
|
|
schurcol = mexqops(pblk{3},tmp,ones(length(tmp),1),1);
|
|
tmp3 = schur(m1+[1:m2],m1+k) + schurcol;
|
|
schur(m1+[1:m2],m1+k) = tmp3;
|
|
end
|
|
end
|
|
else
|
|
%%--- for SDP block where each sub-block is small dimensional
|
|
if issparse(X{p}) & ~issparse(Y{p}); Y{p} = sparse(Y{p}); end
|
|
if ~issparse(X{p}) & issparse(Y{p}); X{p} = sparse(X{p}); end
|
|
tmp = mexskron(pblk,X{p},Y{p});
|
|
schurtmp = At{p,1}'*tmp*At{p,1};
|
|
%%--- schurtmp = 0.5*(schurtmp + schurtmp');
|
|
if (norm(par.permA(p,:)-[1:m]) > 0)
|
|
Perm = spconvert([(1:m)', par.permA(p,:)', ones(m,1)]);
|
|
schur = schur + Perm'*schurtmp*Perm;
|
|
else
|
|
schur = schur + schurtmp;
|
|
end
|
|
end
|
|
%%*******************************************************************
|
|
|
|
|