Dynamic-Calibration/utils/YALMIP-master/modules/global/addEvalVariableCuts.m

121 lines
3.7 KiB
Matlab
Executable File

function pcut = addEvalVariableCuts(p)
pcut = p;
if ~isempty(p.evalMap)
pcut = emptyNumericalModel;
for i = 1:length(p.evalMap)
y = p.evalVariables(i);
x = p.evalMap{i}.variableIndex;
xL = p.lb(x);
xU = p.ub(x);
% Generate a convex hull polytope
if xL<xU
if ~isempty(p.evalMap{i}.properties.convexhull)
% A convex hull generator function is available!
% Might be able to reuse hull from last run node
if isfield(p.evalMap{i},'oldhull') && isequal(p.evalMap{i}.oldhull.xL,xL) && isequal(p.evalMap{i}.oldhull.xU,xU)
[Ax,Ay,b,K] = getOldHull(p,i);
else
[Ax,Ay,b,K,p] = updateHull(xL,xU,p,i);
if isempty(Ax)
% Operator bounder does not cover this interval so
% use the sample-based instead
[Ax,Ay,b,K,p] = convexhullSampled(xL,xU,p,i);
end
end
else
[Ax,Ay,b,K] = convexhullSampled(xL,xU,p,i);
end
if ~isempty(b)
if isempty(K)
% Compatibility with old code
K.f = 0;
K.l = length(b);
end
F_structemp = zeros(size(b,1),length(p.c)+1);
F_structemp(:,1+y) = -Ay;
F_structemp(:,1+x) = -Ax;
F_structemp(:,1) = b;
localModel = createNumericalModel(F_structemp,K);
pcut = mergeNumericalModels(pcut,localModel);
end
end
end
pcut = mergeNumericalModels(p,pcut);
end
function [Ax,Ay,b,K] = getOldHull(p,i);
Ax = p.evalMap{i}.oldhull.Ax;
Ay = p.evalMap{i}.oldhull.Ay;
b = p.evalMap{i}.oldhull.b;
K = p.evalMap{i}.oldhull.K;
function [Ax,Ay,b,K,p] = updateHull(xL,xU,p,i);
try
[Ax,Ay,b,K]=feval(p.evalMap{i}.properties.convexhull,xL,xU, p.evalMap{i}.arg{2:end-1});
catch
[Ax,Ay,b]=feval(p.evalMap{i}.properties.convexhull,xL,xU, p.evalMap{i}.arg{2:end-1});
if ~isempty(Ax)
problem = find(any(isinf([Ax Ay b]),2) | any(isnan([Ax Ay b]),2));
Ax(problem,:) = [];
Ay(problem,:) = [];
b(problem) = [];
end
K = [];
end
p = saveOldHull(xL,xU,Ax,Ay,b,K,p,i);
function p = saveOldHull(xL,xU,Ax,Ay,b,K,p,i)
p.evalMap{i}.oldhull.xL = xL;
p.evalMap{i}.oldhull.xU = xU;
p.evalMap{i}.oldhull.Ax = Ax;
p.evalMap{i}.oldhull.Ay = Ay;
p.evalMap{i}.oldhull.b = b;
p.evalMap{i}.oldhull.K = K;
function [Ax,Ay,b,K,p] = convexhullSampled(xL,xU,p,i)
if length(xL)>1
Ax = [];
Ay = [];
b = [];
K = [];
return
end
% sample function
z = linspace(xL,xU,100);
if isequal(p.evalMap{i}.fcn,'power_internal2')
% Special code for automatically converting sigmonial
% terms to be solvable with bmibnb
fz = feval(p.evalMap{i}.fcn,z,p.evalMap{i}.arg{2});
else
arg = p.evalMap{i}.arg;
arg{1} = z;
fz = real(feval(p.evalMap{i}.fcn,arg{1:end-1}));
% end
[minval,minpos] = min(fz);
[maxval,maxpos] = max(fz);
xtestmin = linspace(z(max([1 minpos-5])),z(min([100 minpos+5])),100);
xtestmax = linspace(z(max([1 maxpos-5])),z(min([100 maxpos+5])),100);
arg{1} = xtestmin;
fz1 = real(feval(p.evalMap{i}.fcn,arg{1:end-1}));
arg{1} = xtestmax;
fz2 = real(feval(p.evalMap{i}.fcn,arg{1:end-1}));
z = [z(:);xtestmin(:);xtestmax(:)];
fz = [fz(:);fz1(:);fz2(:)];
[z,sorter] = sort(z);
fz = fz(sorter);
[z,ii,jj]=unique(z);
fz = fz(ii);
end
[Ax,Ay,b] = convexhullFromSampled(z,fz,xL,xU);
K = [];
p = saveOldHull(xL,xU,Ax,Ay,b,K,p,i);