125 lines
3.1 KiB
Matlab
Executable File
125 lines
3.1 KiB
Matlab
Executable File
function symb_pvec = sdisplay(pvec,symbolicname)
|
||
%SDISPLAY Symbolic display of SDPVAR expression
|
||
%
|
||
% Note that the symbolic display only work if all
|
||
% involved variables are explicitely defined as
|
||
% scalar variables.
|
||
%
|
||
% Variables that not are defined as scalars
|
||
% will be given the name ryv(i). ryv means
|
||
% recovered YALMIP variables, i indicates the
|
||
% index in YALMIP (i.e. the result from getvariables)
|
||
%
|
||
% If you want to change the generic name ryv, just
|
||
% pass a second string argument
|
||
%
|
||
% EXAMPLES
|
||
% sdpvar x y
|
||
% sdisplay(x^2+y^2)
|
||
% ans =
|
||
% 'x^2+y^2'
|
||
%
|
||
% t = sdpvar(2,1);
|
||
% sdisplay(x^2+y^2+t'*t)
|
||
% ans =
|
||
% 'x^2+y^2+ryv(5)^2+ryv(6)^2'
|
||
|
||
|
||
% Author Johan L<>fberg
|
||
% $Id: sym.m,v 1.1 2005-02-22 16:50:11 johanl Exp $
|
||
allnames = {};
|
||
for pi = 1:size(pvec,1)
|
||
for pj = 1:size(pvec,2)
|
||
Y.type = '()';
|
||
Y.subs = [{pi} {pj}];
|
||
p = subsref(pvec,Y);
|
||
|
||
if isnumeric(p)
|
||
symb_p = num2str(p);
|
||
else
|
||
LinearVariables = depends(p);
|
||
x = recover(LinearVariables);
|
||
exponent_p = full(exponents(p,x));
|
||
names = cell(length(x),1);
|
||
for i = 1:length(names)
|
||
names{i} = ['x' num2str(LinearVariables(i))];
|
||
allnames{end+1} = names{i};
|
||
end
|
||
|
||
symb_p = '';
|
||
if all(exponent_p(1,:)==0)
|
||
symb_p = num2str(full(getbasematrix(p,0)));
|
||
exponent_p = exponent_p(2:end,:);
|
||
end
|
||
|
||
for i = 1:size(exponent_p,1)
|
||
coeff = full(getbasematrixwithoutcheck(p,i));
|
||
switch coeff
|
||
case 1
|
||
coeff='+';
|
||
case -1
|
||
coeff = '-';
|
||
otherwise
|
||
if isreal(coeff)
|
||
if coeff >0
|
||
coeff = ['+' num2str2(coeff)];
|
||
else
|
||
coeff=[num2str2(coeff)];
|
||
end
|
||
else
|
||
coeff = ['+' '(' num2str2(coeff) ')' ];
|
||
end
|
||
end
|
||
symb_p = [symb_p coeff symbmonom(names,exponent_p(i,:))];
|
||
end
|
||
if symb_p(1)=='+'
|
||
symb_p = symb_p(2:end);
|
||
end
|
||
end
|
||
symb_pvec{pi,pj} = symb_p;
|
||
end
|
||
end
|
||
allnames = unique(allnames);
|
||
for i = 1:length(allnames)
|
||
evalin('caller',['syms ' allnames{i}]);
|
||
end
|
||
|
||
|
||
S = '';
|
||
for pi = 1:size(pvec,1)
|
||
ss = '';
|
||
for pj = 1:size(pvec,2)
|
||
ss = [ss ' ' symb_pvec{pi,pj} ','];
|
||
end
|
||
S = [S ss ';'];
|
||
end
|
||
S = ['[' S ']'] ;
|
||
symb_pvec = evalin('caller',S);
|
||
|
||
|
||
function s = symbmonom(names,monom)
|
||
s = '';
|
||
for j = 1:length(monom)
|
||
if abs( monom(j))>0
|
||
s = [s names{j}];
|
||
if monom(j)~=1
|
||
s = [s '^' num2str(monom(j))];
|
||
end
|
||
s =[s '*'];
|
||
end
|
||
|
||
end
|
||
if isequal(s(end),'*')
|
||
s = s(1:end-1);
|
||
end
|
||
|
||
function s = num2str2(x)
|
||
s = num2str(full(x));
|
||
if isequal(s,'1')
|
||
s = '';
|
||
end
|
||
if isequal(s,'-1')
|
||
s = '-';
|
||
end
|
||
|
||
|