116 lines
2.8 KiB
Matlab
Executable File
116 lines
2.8 KiB
Matlab
Executable File
function Z = replace(X,Y,W,expand)
|
|
%REPLACE Substitutes variables
|
|
%
|
|
%Z = REPLACE(Y,X,W) Replaces any occurence of the SDPVAR object Y
|
|
% in the SDPVAR object X with the double W
|
|
%
|
|
% Example
|
|
% x = sdpvar(1,1);
|
|
% t = sdpvar(1,1);
|
|
% Y = [1+t;1+x+t];
|
|
% Y = replace(Y,x,2) generates Y=[1+t;3+t]
|
|
|
|
% if nargin<4
|
|
% expand = 1;
|
|
% end
|
|
%
|
|
% if ~isa(X,'sdpvar')
|
|
% Z = X;
|
|
% return
|
|
% end
|
|
% if ~isa(Y,'sdpvar')
|
|
% error('Second arguments must be an sdpvar object')
|
|
% end
|
|
%
|
|
% if ~is(Y,'linear')
|
|
% error('Second arguments must be linear')
|
|
% end
|
|
%
|
|
% if prod(size(W)) == 1
|
|
% W = repmat(W,size(Y));
|
|
% end
|
|
%
|
|
% if ~isequal(size(Y),size(W))
|
|
% if isequal(fliplr(size(Y)),size(W))
|
|
% W = W';
|
|
% else
|
|
% error('Both arguments must have same size')
|
|
% end
|
|
% end
|
|
|
|
% if isa(W,'sdpvar')
|
|
% % This is tricky...
|
|
% Z = variable_replace(X,Y,W);
|
|
% return
|
|
% end
|
|
%
|
|
% if ~isa(W,'double')
|
|
% error('Third arguments must be a double')
|
|
% end
|
|
|
|
% Replace with NaN destroys everything, assume it should be cleared
|
|
W(isnan(W)) = 0;
|
|
|
|
y_lmi_variables = Y.lmi_variables;
|
|
% b = W(:)-Y.basis(:,1);
|
|
% A = Y.basis(:,2:end);
|
|
% feas_var = A\b;
|
|
% if norm(A*feas_var-b)>sqrt(eps)
|
|
% error('Inconsistent assignment')
|
|
% end
|
|
|
|
x_lmi_variables = X.lmi_variables;
|
|
n = X.dim(1);
|
|
m = X.dim(2);
|
|
|
|
[monomtable,variabletype] = yalmip('monomtable');
|
|
if all(variabletype(x_lmi_variables)==0) % is(X,'linear')
|
|
Z = X.basis(:,1);
|
|
for i = 1:length(x_lmi_variables)
|
|
j = find(x_lmi_variables(i) == y_lmi_variables);
|
|
if isempty(j)
|
|
Z = Z + recover(x_lmi_variables(i))*X.basis(:,i+1);
|
|
else
|
|
Z = Z + feas_var(j)*X.basis(:,i+1);
|
|
end
|
|
end
|
|
else
|
|
replaced_vars = depends(Y);
|
|
% used_variables = getvariables(X);
|
|
used_variables = x_lmi_variables;
|
|
% monomtable = yalmip('monomtable');
|
|
local_monom = monomtable(used_variables,replaced_vars);
|
|
Wall = W;
|
|
Z = [];
|
|
|
|
local_monoms_left = monomtable(used_variables,:);
|
|
local_monoms_left(:,replaced_vars) = 0;
|
|
used_left = find(sum(local_monoms_left,1));
|
|
base = recovermonoms(local_monoms_left(:,used_left),recover(used_left));
|
|
|
|
for rep = 1:size(Wall,2)
|
|
W = Wall(:,rep);
|
|
W = W(:)';
|
|
gain = zeros(length(used_variables),1);
|
|
for i = 1:length(used_variables)
|
|
% F**N 6.5 0^sparse(0) and 0^0 differ
|
|
gain(i) = prod(W.^full(local_monom(i,:)));
|
|
end
|
|
|
|
base = base.*gain(:);
|
|
Ztemp = X.basis(:,1);
|
|
Ztemp = Ztemp + X.basis(:,2:end)*base;
|
|
Z = [Z;Ztemp];
|
|
end
|
|
end
|
|
|
|
if isa(Z,'sdpvar')
|
|
Z.dim(1) = n*size(Wall,2);
|
|
Z.dim(2) = m;
|
|
Z.typeflag = X.typeflag;
|
|
% Reset info about conic terms
|
|
Z.conicinfo = [0 0];
|
|
else
|
|
Z = reshape(full(Z),n,m);
|
|
end
|