Dynamic-Calibration/utils/SDPT3-4.0/Solver/gdcomp.m

169 lines
5.4 KiB
Matlab
Executable File

%%*********************************************************************
%% gdcomp: Compute gd = 1/td in Equation (15) of the paper:
%%
%% R.M. Freund, F. Ordonez, and K.C. Toh,
%% Behavioral measures and their correlation with IPM iteration counts
%% on semi-definite programming problems,
%% Mathematical Programming, 109 (2007), pp. 445--475.
%%
%% [gd,info,yfeas,Zfeas,blk2,At2,C2,b2] = gdcomp(blk,At,C,b,OPTIONS,solveyes);
%%
%% yfeas,Zfeas: a dual feasible pair when gd is finite.
%% That is, if
%% Aty = Atyfun(blk,At,[],[],yfeas);
%% Rd = ops(C,'-',ops(Zfeas,'+',Aty));
%% then
%% ops(Rd,'norm') should be small.
%%*****************************************************************
%% SDPT3: version 4.0
%% Copyright (c) 1997 by
%% Kim-Chuan Toh, Michael J. Todd, Reha H. Tutuncu
%% Last Modified: 16 Sep 2004
%%*****************************************************************
function [gd,info,yfeas,Zfeas,blk2,At2,C2,b2] = gdcomp(blk,At,C,b,OPTIONS,solveyes);
if (nargin < 6); solveyes = 1; end
if (nargin < 5)
OPTIONS = sqlparameters;
OPTIONS.vers = 1;
OPTIONS.gaptol = 1e-10;
OPTIONS.printlevel = 3;
end
if isempty(OPTIONS); OPTIONS = sqlparameters; end
if ~isfield(OPTIONS,'solver'); OPTIONS.solver = 'HSDsqlp'; end
if ~isfield(OPTIONS,'printlevel'); OPTIONS.printlevel = 3; end
if ~iscell(C); tmp = C; clear C; C{1} = tmp; end
%%
%% convert ublk to lblk
%%
exist_ublk = 0;
for p = 1:size(blk,1)
pblk = blk(p,:);
if strcmp(pblk{1},'u');
exist_ublk = 1;
fprintf('\n converting ublk into the difference of two non-negative vectors');
blk{p,1} = 'l'; blk{p,2} = 2*sum(blk{p,2});
At{p} = [At{p}; -At{p}];
C{p} = [C{p}; -C{p}];
end
end
%%
m = length(b);
blk2 = blk;
At2 = cell(size(blk,1),1);
C2 = cell(size(blk,1),1);
EE = cell(size(blk,1),1);
%%
%%
%%
dd = zeros(1,m);
alp = 0;
beta = 0;
for p = 1:size(blk,1)
pblk = blk(p,:);
n = sum(pblk{2});
if strcmp(pblk{1},'s')
C2{p,1} = sparse(n,n);
else
C2{p,1} = zeros(n,1);
end
dd = dd + sqrt(sum(At{p}.*At{p}));
beta = beta + norm(C{p},'fro');
alp = alp + sqrt(n);
end
alp = 1./max(1,alp);
beta = 1./max(1,beta);
dd = 1./max(1,dd);
%%
%% New multipliers in dual problem:
%% [v; tt; theta].
%%
D = spdiags(dd',0,m,m);
ss = 0; cc = 0; aa = zeros(1,m);
exist_ublk = 0;
for p = 1:size(blk,1)
pblk = blk(p,:);
n = sum(pblk{2});
if strcmp(pblk{1},'s')
At2{p} = [At{p}*D, svec(pblk,alp*speye(n,n),1), -svec(pblk,beta*C{p},1)];
ss = ss + n;
cc = cc + trace(C{p});
aa = aa + svec(pblk,speye(n),1)'*At{p};
EE{p} = speye(n,n);
elseif strcmp(pblk{1},'q')
eq = zeros(n,1);
idx1 = 1+[0,cumsum(pblk{2})];
idx1 = idx1(1:length(idx1)-1);
eq(idx1) = ones(length(idx1),1);
At2{p} = [At{p}*D, 2*sparse(alp*eq), -sparse(beta*C{p})];
ss = ss + 2*length(pblk{2});
cc = cc + sum(C{p}(idx1));
aa = aa + eq'*At{p};
EE{p} = eq;
elseif strcmp(pblk{1},'l')
el = ones(n,1);
At2{p} = [At{p}*D, sparse(alp*el), -sparse(beta*C{p})];
ss = ss + n;
cc = cc + el'*C{p};
aa = aa + el'*At{p};
EE{p} = el;
elseif strcmp(pblk{1},'u')
At2{p} = [At{p}*D, sparse(n,1), -sparse(beta*C{p})];
exist_ublk = 1;
EE{p} = sparse(n,1);
end
end
aa = aa.*dd;
cc = cc*beta;
%%
%% 4 additional inequality constraints in dual problem.
%%
numblk = size(blk,1);
blk2{numblk+1,1} = 'l'; blk2{numblk+1,2} = 4;
C2{numblk+1,1} = [1; 1; 0; 0];
At2{numblk+1,1} = [-aa, 0, cc;
zeros(1,m), 0, beta;
zeros(1,m), alp, -beta
zeros(1,m), -alp, 0];
At2{numblk+1} = sparse(At2{numblk+1});
b2 = [zeros(m,1); alp; 0];
%%
%% Solve SDP
%%
gd = []; info = []; yfeas = []; Zfeas = [];
if (solveyes)
if strcmp(OPTIONS.solver,'sqlp')
[X0,y0,Z0] = infeaspt(blk2,At2,C2,b2,2,100);
[obj,X,y,Z,info] = sqlp(blk2,At2,C2,b2,OPTIONS,X0,y0,Z0);
elseif strcmp(OPTIONS.solver,'HSDsqlp');
[obj,X,y,Z,info] = HSDsqlp(blk2,At2,C2,b2,OPTIONS);
else
[obj,X,y,Z,info] = sdpt3(blk2,At2,C2,b2,OPTIONS);
end
tt = alp*abs(y(m+1)); theta = beta*abs(y(m+2));
yfeas = D*y(1:m)/theta;
Zfeas = ops(ops(Z(1:numblk),'+',EE,tt),'/',theta);
%%
if (obj(2) > 0) | (abs(obj(2)) < 1e-8)
gd = 1/abs(obj(2));
elseif (obj(1) > 0)
gd = 1/obj(1);
else
gd = 1/exp(mean(log(abs(obj))));
end
err = max(info.dimacs([1,3,6]));
if (OPTIONS.printlevel)
fprintf('\n ******** gd = %3.2e, err = %3.1e\n',gd,err);
if (err > 1e-6);
fprintf('\n----------------------------------------------------')
fprintf('\n gd problem is not solved to sufficient accuracy');
fprintf('\n----------------------------------------------------\n')
end
end
end
%%*********************************************************************