673 lines
25 KiB
Matlab
Executable File
673 lines
25 KiB
Matlab
Executable File
%%*****************************************************************************
|
|
%% sqlp: solve an semidefinite-quadratic-linear program
|
|
%% by infeasible path-following method.
|
|
%%
|
|
%% [obj,X,y,Z,info,runhist] = sqlp(blk,At,C,b,OPTIONS,X0,y0,Z0);
|
|
%%
|
|
%% Input: blk: a cell array describing the block diagonal structure of SQL data.
|
|
%% At: a cell array with At{p} = [svec(Ap1) ... svec(Apm)]
|
|
%% b,C: data for the SQL instance.
|
|
%% (X0,y0,Z0): an initial iterate (if it is not given, the default is used).
|
|
%% OPTIONS: a structure that specifies parameters required in sqlp.m,
|
|
%% (if it is not given, the default in sqlparameters.m is used).
|
|
%%
|
|
%% Output: obj = [<C,X> <b,y>].
|
|
%% (X,y,Z): an approximately optimal solution or a primal or dual
|
|
%% infeasibility certificate.
|
|
%% info.termcode = termination-code
|
|
%% info.iter = number of iterations
|
|
%% info.obj = [primal-obj, dual-obj]
|
|
%% info.cputime = total-time
|
|
%% info.gap = gap
|
|
%% info.pinfeas = primal_infeas
|
|
%% info.dinfeas = dual_infeas
|
|
%% runhist.pobj = history of primal objective value.
|
|
%% runhist.dobj = history of dual objective value.
|
|
%% runhist.gap = history of <X,Z>.
|
|
%% runhist.pinfeas = history of primal infeasibility.
|
|
%% runhist.dinfeas = history of dual infeasibility.
|
|
%% runhist.cputime = history of cputime spent.
|
|
%%----------------------------------------------------------------------------
|
|
%% The OPTIONS structure specifies the required parameters:
|
|
%% vers gam predcorr expon gaptol inftol steptol
|
|
%% maxit printlevel ...
|
|
%% (all have default values set in sqlparameters.m).
|
|
%%
|
|
%%*************************************************************************
|
|
%% SDPT3: version 3.1
|
|
%% Copyright (c) 1997 by
|
|
%% K.C. Toh, M.J. Todd, R.H. Tutuncu
|
|
%% Last Modified: 16 Sep 2004
|
|
%%*************************************************************************
|
|
|
|
function [obj,X,y,Z,info,runhist] = sqlp(blk,At,C,b,OPTIONS,X0,y0,Z0);
|
|
%%
|
|
%%-----------------------------------------
|
|
%% get parameters from the OPTIONS structure.
|
|
%%-----------------------------------------
|
|
%%
|
|
global matlabversion ispc_hp_ibm
|
|
global spdensity iter solve_ok switch2LU depconstr
|
|
global cachesize smallblkdim printlevel
|
|
global schurfun schurfun_par permZ
|
|
|
|
warning off;
|
|
matlabversion = sscanf(version,'%f');
|
|
matlabversion = matlabversion(1);
|
|
ispc_hp_ibm = strncmp(computer,'PC',2) | strncmp(computer,'HP',2) | ...
|
|
strncmp(computer,'IBM',3);
|
|
|
|
vers = 1;
|
|
predcorr = 1;
|
|
gam = 0;
|
|
expon = 1;
|
|
gaptol = 1e-8;
|
|
inftol = 1e-8;
|
|
steptol = 1e-6;
|
|
maxit = 100;
|
|
printlevel = 3;
|
|
stoplevel = 1;
|
|
spdensity = 0.4;
|
|
rmdepconstr = 0;
|
|
cachesize = 256;
|
|
smallblkdim = 15;
|
|
schurfun = cell(size(blk,1),1);
|
|
schurfun_par = cell(size(blk,1),1);
|
|
if exist('OPTIONS')
|
|
if isfield(OPTIONS,'vers'); vers = OPTIONS.vers; end
|
|
if isfield(OPTIONS,'predcorr'); predcorr = OPTIONS.predcorr; end
|
|
if isfield(OPTIONS,'gam'); gam = OPTIONS.gam; end
|
|
if isfield(OPTIONS,'expon'); expon = OPTIONS.expon; end
|
|
if isfield(OPTIONS,'gaptol'); gaptol = OPTIONS.gaptol; end
|
|
if isfield(OPTIONS,'inftol'); inftol = OPTIONS.inftol; end
|
|
if isfield(OPTIONS,'steptol'); steptol = OPTIONS.steptol; end
|
|
if isfield(OPTIONS,'maxit'); maxit = OPTIONS.maxit; end
|
|
if isfield(OPTIONS,'printlevel'); printlevel = OPTIONS.printlevel; end
|
|
if isfield(OPTIONS,'stoplevel'); stoplevel = OPTIONS.stoplevel; end
|
|
if isfield(OPTIONS,'spdensity'); spdensity = OPTIONS.spdensity; end
|
|
if isfield(OPTIONS,'rmdepconstr'); rmdepconstr = OPTIONS.rmdepconstr; end
|
|
if isfield(OPTIONS,'cachesize'); cachesize = OPTIONS.cachesize; end
|
|
if isfield(OPTIONS,'smallblkdim'); smallblkdim = OPTIONS.smallblkdim; end
|
|
if isfield(OPTIONS,'schurfun'); schurfun = OPTIONS.schurfun; end
|
|
if isfield(OPTIONS,'schurfun_par'); schurfun_par = OPTIONS.schurfun_par; end
|
|
if isempty(schurfun); schurfun = cell(size(blk,1),1); end
|
|
if isempty(schurfun_par); schurfun_par = cell(size(blk,1),1); end
|
|
end
|
|
%%
|
|
if all(vers-[1 2]); error('*** vers must be 1 or 2 ***'); end;
|
|
%%
|
|
%%-----------------------------------------
|
|
%% convert matrices to cell arrays.
|
|
%%-----------------------------------------
|
|
%%
|
|
if ~iscell(At); At = {At}; end;
|
|
if ~iscell(C); C = {C}; end;
|
|
m = length(b);
|
|
if all(size(At) == [size(blk,1), m]);
|
|
convertyes = zeros(size(blk,1),1);
|
|
for p = 1:size(blk,1)
|
|
if strcmp(blk{p,1},'s') & all(size(At{p,1}) == sum(blk{p,2}))
|
|
convertyes(p) = 1;
|
|
end
|
|
end
|
|
if any(convertyes)
|
|
if (printlevel); fprintf('\n sqlp: converting At into required format'); end
|
|
At = svec(blk,At,ones(size(blk,1),1));
|
|
end
|
|
end
|
|
if (nargin <= 5) | (isempty(X0) | isempty(y0) | isempty(Z0));
|
|
[X0,y0,Z0] = infeaspt(blk,At,C,b);
|
|
end
|
|
X = X0; y = y0; Z = Z0;
|
|
if ~iscell(X); X = {X}; end;
|
|
if ~iscell(Z); Z = {Z}; end;
|
|
%%
|
|
%%-----------------------------------------
|
|
%% validate SQLP data.
|
|
%%-----------------------------------------
|
|
%%
|
|
tstart = cputime;
|
|
[blk,At,C,b,dim,numblk,X,Z] = validate(blk,At,C,b,X,y,Z);
|
|
if (printlevel>=2)
|
|
fprintf('\n num. of constraints = %2.0d',length(b));
|
|
if dim(1);
|
|
fprintf('\n dim. of sdp var = %2.0d,',dim(1));
|
|
fprintf(' num. of sdp blk = %2.0d',numblk(1));
|
|
end
|
|
if dim(2);
|
|
fprintf('\n dim. of socp var = %2.0d,',dim(2));
|
|
fprintf(' num. of socp blk = %2.0d',numblk(2));
|
|
end
|
|
if dim(3); fprintf('\n dim. of linear var = %2.0d',dim(3)); end
|
|
if dim(4); fprintf('\n dim. of free var = %2.0d',dim(4)); end
|
|
end
|
|
if (vers == 0);
|
|
if dim(1); vers = 1; else; vers = 2; end
|
|
end
|
|
%%
|
|
%%-----------------------------------------
|
|
%% convert unrestricted blk to linear blk.
|
|
%%-----------------------------------------
|
|
%%
|
|
ublkidx = zeros(size(blk,1),1);
|
|
for p = 1:size(blk,1)
|
|
if strcmp(blk{p,1},'u')
|
|
ublkidx(p) = 1;
|
|
n = 2*blk{p,2};
|
|
blk{p,1} = 'l';
|
|
blk{p,2} = n;
|
|
At{p} = [At{p}; -At{p}];
|
|
C{p} = [C{p}; -C{p}];
|
|
b2 = 1 + abs(b');
|
|
normC = 1+norm(C{p});
|
|
normA = 1+sqrt(sum(At{p}.*At{p}));
|
|
%%X{p} = max(1,max(b2./normA)) *ones(n,1);
|
|
%%Z{p} = max(1,max([normA,normC])/sqrt(n)) *ones(n,1);
|
|
X{p} = n* ones(n,1); Z{p} = n* ones(n,1);
|
|
end
|
|
end
|
|
%%
|
|
%%-----------------------------------------
|
|
%% check if the matrices Ak are
|
|
%% linearly independent.
|
|
%%-----------------------------------------
|
|
%%
|
|
m0 = length(b);
|
|
[At,b,y,indeprows,depconstr,feasible] = checkdepconstr(blk,At,b,y,rmdepconstr);
|
|
if (~feasible)
|
|
fprintf('\n sqlp: SQLP is not feasible'); return;
|
|
end
|
|
%%
|
|
%%-----------------------------------------
|
|
%% find the combined list of non-zero
|
|
%% elements of Aj, j = 1:k, for each k.
|
|
%%-----------------------------------------
|
|
%%
|
|
m = length(b);
|
|
[At,C,X,Z,par.permA,par.permZ] = sortA(blk,At,C,b,X,Z);
|
|
[par.isspA,par.nzlistA,par.nzlistAsum,par.isspAy,par.nzlistAy] = nzlist(blk,At,m);
|
|
%%
|
|
%%-----------------------------------------
|
|
%% initialization
|
|
%%-----------------------------------------
|
|
%%
|
|
[Xchol,indef(1)] = blkcholfun(blk,X);
|
|
[Zchol,indef(2)] = blkcholfun(blk,Z);
|
|
if any(indef)
|
|
if (printlevel); fprintf('\n Stop: X, Z are not both positive definite'); end
|
|
termcode = -3;
|
|
return;
|
|
end
|
|
normC = zeros(length(C),1);
|
|
for p = 1:length(C); normC(p) = max(max(abs(C{p}))); end
|
|
normC = 1+max(normC);
|
|
normb = 1+max(abs(b));
|
|
normX0 = 1+ops(X0,'norm'); normZ0 = 1+ops(Z0,'norm');
|
|
E = cell(size(blk,1),1);
|
|
for p = 1:size(blk,1)
|
|
pblk = blk(p,:);
|
|
if strcmp(pblk{1},'s')
|
|
E{p} = speye(sum(pblk{2}));
|
|
elseif strcmp(pblk{1},'q')
|
|
s = 1+[0,cumsum(pblk{2})]; len = length(pblk{2});
|
|
tmp = zeros(sum(pblk{2}),1); tmp(s(1:len)) = ones(len,1);
|
|
E{p} = tmp;
|
|
elseif strcmp(pblk{1},'l')
|
|
E{p} = ones(pblk{2},1);
|
|
elseif strcmp(pblk{1},'u')
|
|
E{p} = zeros(pblk{2},1);
|
|
end
|
|
end
|
|
AE = AXfun(blk,At,par.permA,E);
|
|
AE = AE*norm(b)/(1+norm(AE)); E = ops(E,'*',ops(C,'norm')/(1+ops(E,'norm')));
|
|
n = ops(C,'getM');
|
|
trXZ = blktrace(blk,X,Z);
|
|
gap = trXZ;
|
|
mu = trXZ/n;
|
|
ptau = 1e-4;
|
|
dtau = 1e-4*ops(X,'norm');
|
|
AX = AXfun(blk,At,par.permA,X);
|
|
rp = b + ptau*AE - AX;
|
|
ZpATy = ops(Z,'+',Atyfun(blk,At,par.permA,par.isspAy,y));
|
|
ZpATynorm = ops(ZpATy,'norm');
|
|
Rd = ops(ops(C,'+',E,dtau),'-',ZpATy);
|
|
obj = [blktrace(blk,C,X), b'*y];
|
|
rel_gap = gap/(1+sum(abs(obj)));
|
|
prim_infeas = norm(b-AX)/normb;
|
|
dual_infeas = ops(ops(C,'-',ZpATy),'norm')/normC;
|
|
infeas_meas = max(prim_infeas,dual_infeas);
|
|
pstep = 0; dstep = 0; pred_convg_rate = 1; corr_convg_rate = 1;
|
|
prim_infeas_bad = 0;
|
|
termcode = -6;
|
|
runhist.pobj = obj(1);
|
|
runhist.dobj = obj(2);
|
|
runhist.gap = gap;
|
|
runhist.relgap = rel_gap;
|
|
runhist.pinfeas = prim_infeas;
|
|
runhist.dinfeas = dual_infeas;
|
|
runhist.infeas = infeas_meas;
|
|
runhist.step = 0;
|
|
runhist.cputime = cputime-tstart;
|
|
ttime.preproc = runhist.cputime;
|
|
ttime.pred = 0; ttime.pred_pstep = 0; ttime.pred_dstep = 0;
|
|
ttime.corr = 0; ttime.corr_pstep = 0; ttime.corr_dstep = 0;
|
|
ttime.pchol = 0; ttime.dchol = 0; ttime.misc = 0;
|
|
%%
|
|
%%-----------------------------------------
|
|
%% display parameters, and initial info
|
|
%%-----------------------------------------
|
|
%%
|
|
if (printlevel >= 2)
|
|
fprintf('\n********************************************');
|
|
fprintf('***********************\n');
|
|
fprintf(' SDPT3: Infeasible path-following algorithms');
|
|
fprintf('\n********************************************');
|
|
fprintf('***********************\n');
|
|
[hh,mm,ss] = mytimed(ttime.preproc);
|
|
if (printlevel>=3)
|
|
fprintf(' version predcorr gam expon\n');
|
|
if (vers == 1); fprintf(' HKM '); elseif (vers == 2); fprintf(' NT '); end
|
|
fprintf(' %1.0f %4.3f %1.0f\n',predcorr,gam,expon);
|
|
fprintf('\nit pstep dstep p_infeas d_infeas gap')
|
|
fprintf(' mean(obj) cputime\n');
|
|
fprintf('------------------------------------------------');
|
|
fprintf('-------------------\n');
|
|
fprintf('%2.0f %4.3f %4.3f %2.1e %2.1e',0,0,0,prim_infeas,dual_infeas);
|
|
fprintf(' %2.1e %- 7.6e %d:%d:%d',gap,mean(obj),hh,mm,ss);
|
|
end
|
|
end
|
|
%%
|
|
%%---------------------------------------------------------------
|
|
%% start main loop
|
|
%%---------------------------------------------------------------
|
|
%%
|
|
param.printlevel = printlevel;
|
|
param.gaptol = gaptol;
|
|
param.inftol = inftol;
|
|
param.m0 = m0;
|
|
param.indeprows = indeprows;
|
|
param.scale_data = 0;
|
|
param.normX0 = normX0;
|
|
param.normZ0 = normZ0;
|
|
%%
|
|
for iter = 1:maxit;
|
|
|
|
update_iter = 0; breakyes = 0; pred_slow = 0; corr_slow = 0; step_short = 0;
|
|
tstart = cputime;
|
|
time = zeros(1,11);
|
|
time(1) = cputime;
|
|
%%
|
|
%%---------------------------------------------------------------
|
|
%% predictor step.
|
|
%%---------------------------------------------------------------
|
|
%%
|
|
if (predcorr)
|
|
sigma = 0;
|
|
else
|
|
sigma = 1-0.9*min(pstep,dstep);
|
|
if (iter == 1); sigma = 0.5; end;
|
|
end
|
|
sigmu = sigma*mu;
|
|
|
|
invXchol = cell(size(blk,1),1);
|
|
invZchol = ops(Zchol,'inv');
|
|
if (vers == 1);
|
|
[par,dX,dy,dZ,coeff,L,hRd] = ...
|
|
HKMpred(blk,At,par,rp,Rd,sigmu,X,Z,invZchol);
|
|
elseif (vers == 2);
|
|
[par,dX,dy,dZ,coeff,L,hRd] = ...
|
|
NTpred(blk,At,par,rp,Rd,sigmu,X,Z,Zchol,invZchol);
|
|
end
|
|
if (solve_ok <= 0)
|
|
fprintf('\n Stop: difficulty in computing predictor directions');
|
|
runhist.cputime(iter+1) = cputime-tstart;
|
|
termcode = -4;
|
|
break;
|
|
end
|
|
time(2) = cputime;
|
|
ttime.pred = ttime.pred + time(2)-time(1);
|
|
%%
|
|
%%-----------------------------------------
|
|
%% step-lengths for predictor step
|
|
%%-----------------------------------------
|
|
%%
|
|
if (gam == 0)
|
|
gamused = 0.9 + 0.09*min(pstep,dstep);
|
|
else
|
|
gamused = gam;
|
|
end
|
|
[Xstep,invXchol] = steplength(blk,X,dX,Xchol,invXchol);
|
|
time(3) = cputime;
|
|
if (Xstep > .99e12) & (blktrace(blk,C,dX) < -1e-3) & (prim_infeas < 1e-3)
|
|
if (printlevel); fprintf('\n Predictor: dual seems infeasible.'); end
|
|
end
|
|
pstep = min(1,gamused*Xstep);
|
|
Zstep = steplength(blk,Z,dZ,Zchol,invZchol);
|
|
time(4) = cputime;
|
|
if (Zstep > .99e12) & (b'*dy > 1e-3) & (dual_infeas < 1e-3)
|
|
if (printlevel); fprintf('\n Predictor: primal seems infeasible.'); end
|
|
end
|
|
dstep = min(1,gamused*Zstep);
|
|
trXZpred = trXZ + pstep*blktrace(blk,dX,Z) + dstep*blktrace(blk,X,dZ) ...
|
|
+ pstep*dstep*blktrace(blk,dX,dZ);
|
|
gappred = trXZpred;
|
|
mupred = trXZpred/n;
|
|
mupredhist(iter) = mupred;
|
|
ttime.pred_pstep = ttime.pred_pstep + time(3)-time(2);
|
|
ttime.pred_dstep = ttime.pred_dstep + time(4)-time(3);
|
|
%%
|
|
%%-----------------------------------------
|
|
%% stopping criteria for predictor step.
|
|
%%-----------------------------------------
|
|
%%
|
|
if (min(pstep,dstep) < steptol) & (stoplevel)
|
|
if (printlevel)
|
|
fprintf('\n Stop: steps in predictor too short:');
|
|
fprintf(' pstep = %3.2e, dstep = %3.2e\n',pstep,dstep);
|
|
end
|
|
runhist.cputime(iter+1) = cputime-tstart;
|
|
termcode = -2;
|
|
breakyes = 1;
|
|
end
|
|
if (iter >= 2)
|
|
idx = [max(2,iter-2) : iter];
|
|
pred_slow = all(mupredhist(idx)./mupredhist(idx-1) > 0.4);
|
|
idx = [max(2,iter-5) : iter];
|
|
pred_convg_rate = mean(mupredhist(idx)./mupredhist(idx-1));
|
|
pred_slow = pred_slow + (mupred/mu > 5*pred_convg_rate);
|
|
end
|
|
if (~predcorr)
|
|
if (max(mu,infeas_meas) < 1e-6) & (pred_slow) & (stoplevel)
|
|
if (printlevel)
|
|
fprintf('\n Stop: lack of progress in predictor:');
|
|
fprintf(' mupred/mu = %3.2f, pred_convg_rate = %3.2f.',...
|
|
mupred/mu,pred_convg_rate);
|
|
end
|
|
runhist.cputime(iter+1) = cputime-tstart;
|
|
termcode = -1;
|
|
breakyes = 1;
|
|
else
|
|
update_iter = 1;
|
|
end
|
|
end
|
|
%%
|
|
%%---------------------------------------------------------------
|
|
%% corrector step.
|
|
%%---------------------------------------------------------------
|
|
%%
|
|
if (predcorr) & (~breakyes)
|
|
step_pred = min(pstep,dstep);
|
|
if (mu > 1e-6)
|
|
if (step_pred < 1/sqrt(3));
|
|
expon_used = 1;
|
|
else
|
|
expon_used = max(expon,3*step_pred^2);
|
|
end
|
|
else
|
|
expon_used = max(1,min(expon,3*step_pred^2));
|
|
end
|
|
sigma = min( 1, (mupred/mu)^expon_used );
|
|
sigmu = sigma*mu;
|
|
%%
|
|
if (vers == 1)
|
|
[dX,dy,dZ] = HKMcorr(blk,At,par,rp,Rd,sigmu,hRd,...
|
|
dX,dZ,coeff,L,X,Z);
|
|
elseif (vers == 2)
|
|
[dX,dy,dZ] = NTcorr(blk,At,par,rp,Rd,sigmu,hRd,...
|
|
dX,dZ,coeff,L,X,Z);
|
|
end
|
|
if (solve_ok <= 0)
|
|
fprintf('\n Stop: difficulty in computing corrector directions');
|
|
runhist.cputime(iter+1) = cputime-tstart;
|
|
termcode = -4;
|
|
break;
|
|
end
|
|
time(5) = cputime;
|
|
ttime.corr = ttime.corr + time(5)-time(4);
|
|
%%
|
|
%%-----------------------------------
|
|
%% step-lengths for corrector step
|
|
%%-----------------------------------
|
|
%%
|
|
if (gam == 0)
|
|
gamused = 0.9 + 0.09*min(pstep,dstep);
|
|
else
|
|
gamused = gam;
|
|
end
|
|
Xstep = steplength(blk,X,dX,Xchol,invXchol);
|
|
time(6) = cputime;
|
|
if (Xstep > .99e12) & (blktrace(blk,C,dX) < -1e-3) & (prim_infeas < 1e-3)
|
|
pstep = Xstep;
|
|
if (printlevel); fprintf('\n Corrector: dual seems infeasible.'); end
|
|
else
|
|
pstep = min(1,gamused*Xstep);
|
|
end
|
|
Zstep = steplength(blk,Z,dZ,Zchol,invZchol);
|
|
time(7) = cputime;
|
|
if (Zstep > .99e12) & (b'*dy > 1e-3) & (dual_infeas < 1e-3)
|
|
dstep = Zstep;
|
|
if (printlevel); fprintf('\n Corrector: primal seems infeasible.'); end
|
|
else
|
|
dstep = min(1,gamused*Zstep);
|
|
end
|
|
trXZcorr = trXZ + pstep*blktrace(blk,dX,Z) + dstep*blktrace(blk,X,dZ)...
|
|
+ pstep*dstep*blktrace(blk,dX,dZ);
|
|
gapcorr = trXZcorr;
|
|
mucorr = trXZcorr/n;
|
|
ttime.corr_pstep = ttime.corr_pstep + time(6)-time(5);
|
|
ttime.corr_dstep = ttime.corr_dstep + time(7)-time(6);
|
|
%%
|
|
%%-----------------------------------------
|
|
%% stopping criteria for corrector step
|
|
%%-----------------------------------------
|
|
%%
|
|
if (iter >= 2)
|
|
idx = [max(2,iter-2) : iter];
|
|
corr_slow = all(runhist.gap(idx)./runhist.gap(idx-1) > 0.8);
|
|
idx = [max(2,iter-5) : iter];
|
|
corr_convg_rate = mean(runhist.gap(idx)./runhist.gap(idx-1));
|
|
corr_slow = corr_slow + (mucorr/mu > max(min(1,5*corr_convg_rate),0.8));
|
|
end
|
|
if (max(mu,infeas_meas) < 1e-6) & (iter > 10) & (corr_slow) & (stoplevel)
|
|
if (printlevel)
|
|
fprintf('\n Stop: lack of progress in corrector:');
|
|
fprintf(' mucorr/mu = %3.2f, corr_convg_rate = %3.2f',...
|
|
mucorr/mu,corr_convg_rate);
|
|
end
|
|
runhist.cputime(iter+1) = cputime-tstart;
|
|
termcode = -1;
|
|
breakyes = 1;
|
|
else
|
|
update_iter = 1;
|
|
end
|
|
end
|
|
%%
|
|
%%---------------------------------------------------------------
|
|
%% udpate iterate
|
|
%%---------------------------------------------------------------
|
|
%%
|
|
indef = [1 1];
|
|
if (update_iter)
|
|
for t = 1:5
|
|
[Xchol,indef(1)] = blkcholfun(blk,ops(X,'+',dX,pstep)); time(8) = cputime;
|
|
if (predcorr); ttime.pchol = ttime.pchol + time(8)-time(7);
|
|
else; ttime.pchol = ttime.pchol + time(8)-time(4);
|
|
end
|
|
if (indef(1)); pstep = 0.8*pstep; else; break; end
|
|
end
|
|
if (t > 1); pstep = gamused*pstep; end
|
|
for t = 1:5
|
|
[Zchol,indef(2)] = blkcholfun(blk,ops(Z,'+',dZ,dstep)); time(9) = cputime;
|
|
if (predcorr); ttime.dchol = ttime.dchol + time(9)-time(8);
|
|
else; ttime.dchol = ttime.dchol + time(9)-time(4);
|
|
end
|
|
if (indef(2)); dstep = 0.8*dstep; else; break; end
|
|
end
|
|
if (t > 1); dstep = gamused*dstep; end
|
|
AXtmp = AX + pstep*AXfun(blk,At,par.permA,dX);
|
|
prim_infeasnew = norm(b-AXtmp)/normb;
|
|
if any(indef)
|
|
if (printlevel); fprintf('\n Stop: X, Z not both positive definite'); end
|
|
termcode = -3;
|
|
breakyes = 1;
|
|
elseif (prim_infeasnew > max([rel_gap,20*prim_infeas,1e-8])) ...
|
|
| (prim_infeasnew > max([1e-4,20*prim_infeas]) & (switch2LU))
|
|
if (stoplevel) & (max(pstep,dstep)<=1)
|
|
if (printlevel)
|
|
fprintf('\n Stop: primal infeas has deteriorated too much, %2.1e',prim_infeasnew);
|
|
end
|
|
termcode = -7;
|
|
breakyes = 1;
|
|
end
|
|
else
|
|
X = ops(X,'+',dX,pstep);
|
|
y = y+dstep*dy;
|
|
Z = ops(Z,'+',dZ,dstep);
|
|
end
|
|
end
|
|
%%---------------------------------------------------------------
|
|
%% adjust linear blk arising from unrestricted blk
|
|
%%---------------------------------------------------------------
|
|
%%
|
|
for p = 1:size(blk,1)
|
|
if (ublkidx(p) == 1)
|
|
len = blk{p,2}/2;
|
|
alpha = 0.8;
|
|
xtmp = min(X{p}([1:len]),X{p}(len+[1:len]));
|
|
X{p}([1:len]) = X{p}([1:len]) - alpha*xtmp;
|
|
X{p}(len+[1:len]) = X{p}(len+[1:len]) - alpha*xtmp;
|
|
if (mu < 1e-8)
|
|
Z{p} = 0.5*mu./max(1,X{p});
|
|
else
|
|
ztmp = min(1,max(Z{p}([1:len]),Z{p}(len+[1:len])));
|
|
beta1 = xtmp'*(Z{p}([1:len])+Z{p}(len+[1:len]));
|
|
beta2 = (X{p}([1:len])+X{p}(len+[1:len])-2*xtmp)'*ztmp;
|
|
beta = max(0.1,min(beta1/beta2,0.5));
|
|
Z{p}([1:len]) = Z{p}([1:len]) + beta*ztmp;
|
|
Z{p}(len+[1:len]) = Z{p}(len+[1:len]) + beta*ztmp;
|
|
end
|
|
end
|
|
end
|
|
%%
|
|
%%---------------------------------------------------------------
|
|
%% compute rp, Rd, infeasibities, etc.
|
|
%%---------------------------------------------------------------
|
|
%%
|
|
trXZ = blktrace(blk,X,Z);
|
|
gap = trXZ;
|
|
mu = trXZ/n;
|
|
AX = AXfun(blk,At,par.permA,X);
|
|
ZpATy = ops(Z,'+',Atyfun(blk,At,par.permA,par.isspAy,y));
|
|
ZpATynorm = ops(ZpATy,'norm');
|
|
obj = [blktrace(blk,C,X), b'*y];
|
|
rel_gap = gap/(1+sum(abs(obj)));
|
|
prim_infeas = norm(b-AX)/normb;
|
|
dual_infeas = ops(ops(C,'-',ZpATy),'norm')/normC;
|
|
infeas_meas = max(prim_infeas,dual_infeas);
|
|
if (max([prim_infeas,dual_infeas,rel_gap]) > 1e-4)
|
|
beta = 1e-4;
|
|
elseif (max([prim_infeas,dual_infeas,rel_gap]) > 1e-6)
|
|
beta = 1e-6;
|
|
else
|
|
beta = 1e-8;
|
|
end
|
|
ptau = min([1e-4,beta*norm(y)/iter^4]);
|
|
dtau = min([1e-4,beta*ops(X,'norm')/(iter^4)]);
|
|
rp = b + ptau*AE -AX;
|
|
Rd = ops(ops(C,'+',E,dtau),'-',ZpATy);
|
|
if (obj(2) > 0); homRd = ZpATynorm/(obj(2)); else; homRd = inf; end
|
|
if (obj(1) < 0); homrp = norm(AX)/(-obj(1)); else; homrp = inf; end
|
|
runhist.pobj(iter+1) = obj(1);
|
|
runhist.dobj(iter+1) = obj(2);
|
|
runhist.gap(iter+1) = gap;
|
|
runhist.relgap(iter+1) = rel_gap;
|
|
runhist.pinfeas(iter+1) = prim_infeas;
|
|
runhist.dinfeas(iter+1) = dual_infeas;
|
|
runhist.infeas(iter+1) = infeas_meas;
|
|
runhist.step(iter+1) = min(pstep,dstep);
|
|
runhist.cputime(iter+1) = cputime-tstart;
|
|
time(10) = cputime;
|
|
ttime.misc = ttime.misc + time(10)-time(9);
|
|
|
|
[hh,mm,ss] = mytimed(sum(runhist.cputime));
|
|
if (printlevel>=3)
|
|
fprintf('\n%2.0f %4.3f %4.3f',iter,pstep,dstep);
|
|
fprintf(' %2.1e %2.1e %2.1e',prim_infeas,dual_infeas,gap);
|
|
fprintf(' %- 7.6e %d:%d:%d',mean(obj),hh,mm,ss);
|
|
end
|
|
%%
|
|
%%--------------------------------------------------
|
|
%% check convergence.
|
|
%%--------------------------------------------------
|
|
%%
|
|
param.iter = iter;
|
|
param.obj = obj;
|
|
param.rel_gap = rel_gap;
|
|
param.gap = gap;
|
|
param.mu = mu;
|
|
param.prim_infeas = prim_infeas;
|
|
param.dual_infeas = dual_infeas;
|
|
param.ZpATynorm = ZpATynorm;
|
|
param.homRd = homRd;
|
|
param.homrp = homrp;
|
|
param.AX = AX;
|
|
param.ZpATynorm = ZpATynorm;
|
|
param.normX = ops(X,'norm');
|
|
param.normZ = ops(Z,'norm');
|
|
param.termcode = termcode;
|
|
param.stoplevel = stoplevel;
|
|
param.prim_infeas_bad = prim_infeas_bad;
|
|
[termcode,breakyes,prim_infeas_bad,restart] = sqlpcheckconvg(param,runhist);
|
|
if (breakyes); break; end
|
|
end
|
|
%%---------------------------------------------------------------
|
|
%% end of main loop
|
|
%%---------------------------------------------------------------
|
|
%%
|
|
%%---------------------------------------------------------------
|
|
%% produce infeasibility certificates if appropriate
|
|
%%---------------------------------------------------------------
|
|
%%
|
|
if (iter >= 1)
|
|
param.termcode = termcode;
|
|
[X,y,Z,termcode,resid,reldist] = sqlpmisc(blk,At,C,b,X,y,Z,par.permZ,param);
|
|
end
|
|
%%
|
|
%%---------------------------------------------------------------
|
|
%% recover unrestricted blk from linear blk
|
|
%%---------------------------------------------------------------
|
|
%%
|
|
for p = 1:size(blk,1)
|
|
if (ublkidx(p) == 1)
|
|
n = blk{p,2}/2;
|
|
X{p} = X{p}(1:n)-X{p}(n+[1:n]);
|
|
Z{p} = Z{p}(1:n);
|
|
end
|
|
end
|
|
%%
|
|
%%---------------------------------------------------------------
|
|
%% print summary
|
|
%%---------------------------------------------------------------
|
|
%%
|
|
dimacs = [prim_infeas; 0; dual_infeas; 0];
|
|
dimacs = [dimacs; [-diff(obj); gap]/(1+sum(abs(obj)))];
|
|
info.dimacs = dimacs;
|
|
info.termcode = termcode;
|
|
info.iter = iter;
|
|
info.obj = obj;
|
|
info.gap = gap;
|
|
info.relgap = rel_gap;
|
|
info.pinfeas = prim_infeas;
|
|
info.dinfeas = dual_infeas;
|
|
info.cputime = sum(runhist.cputime);
|
|
info.resid = resid;
|
|
info.reldist = reldist;
|
|
info.normX = ops(X,'norm');
|
|
info.normy = norm(y);
|
|
info.normZ = ops(Z,'norm');
|
|
info.normb = norm(b);
|
|
info.normC = ops(C,'norm');
|
|
info.normA = ops(At,'norm');
|
|
sqlpsummary(info,ttime,[],printlevel);
|
|
%%*****************************************************************************
|