Dynamic-Calibration/utils/SDPT3-4.0/Solver/Oldmfiles/sqlpold.m

693 lines
26 KiB
Matlab
Executable File

%%*****************************************************************************
%% sqlp: solve an semidefinite-quadratic-linear program
%% by infeasible path-following method.
%%
%% [obj,X,y,Z,info,runhist] = sqlp(blk,At,C,b,OPTIONS,X0,y0,Z0);
%%
%% Input: blk: a cell array describing the block diagonal structure of SQL data.
%% At: a cell array with At{p} = [svec(Ap1) ... svec(Apm)]
%% b,C: data for the SQL instance.
%% (X0,y0,Z0): an initial iterate (if it is not given, the default is used).
%% OPTIONS: a structure that specifies parameters required in sqlp.m,
%% (if it is not given, the default in sqlparameters.m is used).
%%
%% Output: obj = [<C,X> <b,y>].
%% (X,y,Z): an approximately optimal solution or a primal or dual
%% infeasibility certificate.
%% info.termcode = termination-code
%% info.iter = number of iterations
%% info.obj = [primal-obj, dual-obj]
%% info.cputime = total-time
%% info.gap = gap
%% info.pinfeas = primal_infeas
%% info.dinfeas = dual_infeas
%% runhist.pobj = history of primal objective value.
%% runhist.dobj = history of dual objective value.
%% runhist.gap = history of <X,Z>.
%% runhist.pinfeas = history of primal infeasibility.
%% runhist.dinfeas = history of dual infeasibility.
%% runhist.cputime = history of cputime spent.
%%----------------------------------------------------------------------------
%% The OPTIONS structure specifies the required parameters:
%% vers gam predcorr expon gaptol inftol steptol
%% maxit printlevel scale_data ...
%% (all have default values set in sqlparameters.m).
%%
%%*************************************************************************
%% SDPT3: version 3.1
%% Copyright (c) 1997 by
%% K.C. Toh, M.J. Todd, R.H. Tutuncu
%% Last Modified: 16 Sep 2004
%%*************************************************************************
function [obj,X,y,Z,info,runhist] = sqlp(blk,At,C,b,OPTIONS,X0,y0,Z0);
%%
%%-----------------------------------------
%% get parameters from the OPTIONS structure.
%%-----------------------------------------
%%
global matlabversion ispc_hp_ibm
global spdensity iter solve_ok switch2LU depconstr
global cachesize smallblkdim printlevel
global schurfun schurfun_par
warning off;
matlabversion = sscanf(version,'%f');
matlabversion = matlabversion(1);
ispc_hp_ibm = strncmp(computer,'PC',2) | strncmp(computer,'HP',2) | ...
strncmp(computer,'IBM',3);
vers = 1;
predcorr = 1;
gam = 0;
expon = 1;
gaptol = 1e-8;
inftol = 1e-8;
steptol = 1e-6;
maxit = 100;
printlevel = 3;
stoplevel = 1;
scale_data = 0;
spdensity = 0.5;
rmdepconstr = 0;
cachesize = 256;
smallblkdim = 15;
schurfun = cell(size(blk,1),1);
schurfun_par = cell(size(blk,1),1);
if exist('OPTIONS')
if isfield(OPTIONS,'vers'); vers = OPTIONS.vers; end
if isfield(OPTIONS,'predcorr'); predcorr = OPTIONS.predcorr; end
if isfield(OPTIONS,'gam'); gam = OPTIONS.gam; end
if isfield(OPTIONS,'expon'); expon = OPTIONS.expon; end
if isfield(OPTIONS,'gaptol'); gaptol = OPTIONS.gaptol; end
if isfield(OPTIONS,'inftol'); inftol = OPTIONS.inftol; end
if isfield(OPTIONS,'steptol'); steptol = OPTIONS.steptol; end
if isfield(OPTIONS,'maxit'); maxit = OPTIONS.maxit; end
if isfield(OPTIONS,'printlevel'); printlevel = OPTIONS.printlevel; end
if isfield(OPTIONS,'stoplevel'); stoplevel = OPTIONS.stoplevel; end
if isfield(OPTIONS,'scale_data'); scale_data = OPTIONS.scale_data; end
if isfield(OPTIONS,'spdensity'); spdensity = OPTIONS.spdensity; end
if isfield(OPTIONS,'rmdepconstr'); rmdepconstr = OPTIONS.rmdepconstr; end
if isfield(OPTIONS,'cachesize'); cachesize = OPTIONS.cachesize; end
if isfield(OPTIONS,'smallblkdim'); smallblkdim = OPTIONS.smallblkdim; end
if isfield(OPTIONS,'schurfun');
schurfun = OPTIONS.schurfun;
if ~isempty(schurfun); scale_data = 0; end
end
if isfield(OPTIONS,'schurfun_par'); schurfun_par = OPTIONS.schurfun_par; end
if isempty(schurfun); schurfun = cell(size(blk,1),1); end
if isempty(schurfun_par); schurfun_par = cell(size(blk,1),1); end
end
%%
if all(vers-[1 2]); error('*** vers must be 1 or 2 ***'); end;
%%
%%-----------------------------------------
%% convert matrices to cell arrays.
%%-----------------------------------------
%%
if ~iscell(At); At = {At}; end;
if ~iscell(C); C = {C}; end;
m = length(b);
if all(size(At) == [size(blk,1), m]);
convertyes = zeros(size(blk,1),1);
for p = 1:size(blk,1)
if strcmp(blk{p,1},'s') & all(size(At{p,1}) == sum(blk{p,2}))
convertyes(p) = 1;
end
end
if any(convertyes)
if (printlevel); fprintf('\n sqlp: converting At into required format'); end
At = svec(blk,At,ones(size(blk,1),1));
end
end
if (nargin <= 5) | (isempty(X0) | isempty(y0) | isempty(Z0));
[X0,y0,Z0] = infeaspt(blk,At,C,b);
end
X = X0; y = y0; Z = Z0;
if ~iscell(X); X = {X}; end;
if ~iscell(Z); Z = {Z}; end;
%%
%%-----------------------------------------
%% validate SQLP data.
%%-----------------------------------------
%%
tstart = cputime;
[blk,At,C,b,dim,numblk,X,Z] = validate(blk,At,C,b,X,y,Z);
if (printlevel>=2)
fprintf('\n num. of constraints = %2.0d',length(b));
if dim(1);
fprintf('\n dim. of sdp var = %2.0d,',dim(1));
fprintf(' num. of sdp blk = %2.0d',numblk(1));
end
if dim(2);
fprintf('\n dim. of socp var = %2.0d,',dim(2));
fprintf(' num. of socp blk = %2.0d',numblk(2));
end
if dim(3); fprintf('\n dim. of linear var = %2.0d',dim(3)); end
if dim(4); fprintf('\n dim. of free var = %2.0d',dim(4)); end
end
%%
%%-----------------------------------------
%% convert unrestricted blk to linear blk.
%%-----------------------------------------
%%
ublkidx = zeros(size(blk,1),1);
for p = 1:size(blk,1)
if strcmp(blk{p,1},'u')
ublkidx(p) = 1;
n = 2*blk{p,2};
blk{p,1} = 'l';
blk{p,2} = n;
At{p} = [At{p}; -At{p}];
C{p} = [C{p}; -C{p}];
b2 = 1 + abs(b');
normC = 1+norm(C{p});
normA = 1+sqrt(sum(At{p}.*At{p}));
X{p} = max(1,max(b2./normA)) *ones(n,1);
Z{p} = max(1,max([normA,normC])/sqrt(n)) *ones(n,1);
end
end
%%
%%-----------------------------------------
%% check whether {A1,...,Am} is
%% linearly independent.
%%-----------------------------------------
%%
m0 = length(b);
[At,b,y,indeprows,depconstr,feasible] = checkdepconstr(blk,At,b,y,rmdepconstr);
if (~feasible)
fprintf('\n sqlp: SQLP is not feasible'); return;
end
%%
%%-----------------------------------------
%% scale SQLP data. Note: must be done only
%% after checkdepconstr
%%-----------------------------------------
%%
normC2 = zeros(length(C),1);
for p = 1:length(C); normC2(p) = max(max(abs(C{p}))); end
normC2 = 1+max(normC2);
normb2 = 1+max(abs(b));
normX0 = 1+ops(X0,'norm'); normZ0 = 1+ops(Z0,'norm');
if (scale_data)
[At,C,b,X,y,Z,normA,normC,normb] = scaling(blk,At,C,b,X,y,Z);
else
normA = 1; normC = 1; normb = 1;
end
%%
%%-----------------------------------------
%% find the combined list of non-zero
%% elements of Aj, j = 1:k, for each k.
%%-----------------------------------------
%%
m = length(b);
[At,C,X,Z,par.permA,par.permZ] = sortA(blk,At,C,b,X,Z);
[par.isspA,par.nzlistA,par.nzlistAsum,par.isspAy,par.nzlistAy] = nzlist(blk,At,m);
%%
%%-----------------------------------------
%% initialization
%%-----------------------------------------
%%
[Xchol,indef(1)] = blkcholfun(blk,X);
[Zchol,indef(2)] = blkcholfun(blk,Z);
if any(indef)
if (printlevel); fprintf('\n Stop: X, Z are not both positive definite'); end
termcode = -3;
return;
end
nn = 0;
for p = 1:size(blk,1);
pblk = blk(p,:);
if strcmp(pblk{1},'s') | strcmp(pblk{1},'q') | strcmp(pblk{1},'l')
nn = nn + sum(pblk{2});
end
end
AX = AXfun(blk,At,par.permA,X);
rp = b-AX;
ZpATy = ops(Z,'+',Atyfun(blk,At,par.permA,par.isspAy,y));
ZpATynorm = ops(ZpATy,'norm');
Rd = ops(C,'-',ZpATy);
obj = (normb*normC)*[blktrace(blk,C,X), b'*y];
trXZ = blktrace(blk,X,Z);
gap = (normb*normC)*trXZ;
mu = trXZ/nn;
rel_gap = gap/(1+sum(abs(obj)));
prim_infeas = norm(rp)/normb2;
dual_infeas = ops(Rd,'norm')/normC2;
infeas_meas = max(prim_infeas,dual_infeas);
if (scale_data)
infeas_org(1) = norm(normA.*rp)*normb/normb2;
infeas_org(2) = ops(Rd,'norm')*normC/normC2;
else
infeas_org = [0,0];
end
termcode = -6;
pstep = 0; dstep = 0; pred_convg_rate = 1; corr_convg_rate = 1;
prim_infeas_bad = 0; homRd = inf; homrp = inf;
runhist.pobj = obj(1);
runhist.dobj = obj(2);
runhist.gap = gap;
runhist.relgap = rel_gap;
runhist.pinfeas = prim_infeas;
runhist.dinfeas = dual_infeas;
runhist.infeas = infeas_meas;
runhist.step = 0;
runhist.cputime = cputime-tstart;
ttime.preproc = runhist.cputime;
ttime.pred = 0; ttime.pred_pstep = 0; ttime.pred_dstep = 0;
ttime.corr = 0; ttime.corr_pstep = 0; ttime.corr_dstep = 0;
ttime.pchol = 0; ttime.dchol = 0; ttime.misc = 0;
%%
%%-----------------------------------------
%% display parameters and initial info
%%-----------------------------------------
%%
if (printlevel >= 2)
fprintf('\n********************************************');
fprintf('***********************\n');
fprintf(' SDPT3: Infeasible path-following algorithms');
fprintf('\n********************************************');
fprintf('***********************\n');
[hh,mm,ss] = mytimed(ttime.preproc);
if (printlevel>=3)
fprintf(' version predcorr gam expon scale_data\n');
if (vers == 1); fprintf(' HKM '); elseif (vers == 2); fprintf(' NT '); end
fprintf(' %1.0f %4.3f',predcorr,gam);
fprintf(' %1.0f %1.0f %1.0f\n',expon,scale_data);
fprintf('\nit pstep dstep p_infeas d_infeas gap')
fprintf(' mean(obj) cputime\n');
fprintf('------------------------------------------------');
fprintf('-------------------\n');
fprintf('%2.0f %4.3f %4.3f %2.1e %2.1e',0,0,0,prim_infeas,dual_infeas);
fprintf(' %2.1e %- 7.6e %d:%d:%d',gap,mean(obj),hh,mm,ss);
end
end
%%
%%---------------------------------------------------------------
%% start main loop
%%---------------------------------------------------------------
%%
param.inftol = inftol;
param.normA = normA;
param.normC = normC;
param.normb = normb;
param.normX0 = normX0;
param.normZ0 = normZ0;
param.m0 = m0;
param.indeprows = indeprows;
param.gaptol = gaptol;
param.inftol = inftol;
param.scale_data = scale_data;
param.printlevel = printlevel;
%%
for iter = 1:maxit;
update_iter = 0; breakyes = 0; pred_slow = 0; corr_slow = 0; step_short = 0;
tstart = cputime;
timeold = cputime;
%%
%%---------------------------------------------------------------
%% predictor step.
%%---------------------------------------------------------------
%%
if (predcorr)
sigma = 0;
else
sigma = 1-0.9*min(pstep,dstep);
if (iter == 1); sigma = 0.5; end;
end
sigmu = sigma*mu;
invXchol = cell(size(blk,1),1);
invZchol = ops(Zchol,'inv');
if (vers == 1);
[par,dX,dy,dZ,coeff,L,hRd] = ...
HKMpred(blk,At,par,rp,Rd,sigmu,X,Z,invZchol);
elseif (vers == 2);
[par,dX,dy,dZ,coeff,L,hRd] = ...
NTpred(blk,At,par,rp,Rd,sigmu,X,Z,Zchol,invZchol);
end
if (solve_ok <= 0)
fprintf('\n Stop: difficulty in computing predictor directions');
runhist.cputime(iter+1) = cputime-tstart;
termcode = -4;
break;
end
timenew = cputime;
ttime.pred = ttime.pred + timenew-timeold; timeold = timenew;
%%
%%-----------------------------------------
%% step-lengths for predictor step
%%-----------------------------------------
%%
if (gam == 0)
gamused = 0.9 + 0.09*min(pstep,dstep);
else
gamused = gam;
end
[Xstep,invXchol] = steplength(blk,X,dX,Xchol,invXchol);
pstep = min(1,gamused*Xstep);
if (Xstep > .99e12) & (blktrace(blk,C,dX) < -1e-3) & (prim_infeas < 1e-3)
pstep = Xstep;
if (printlevel); fprintf('\n Predictor: dual seems infeasible.'); end
end
timenew = cputime;
ttime.pred_pstep = ttime.pred_pstep + timenew-timeold; timeold = timenew;
Zstep = steplength(blk,Z,dZ,Zchol,invZchol);
dstep = min(1,gamused*Zstep);
if (Zstep > .99e12) & (b'*dy > 1e-3) & (dual_infeas < 1e-3)
dstep = Zstep;
if (printlevel); fprintf('\n Predictor: primal seems infeasible.'); end
end
trXZpred = trXZ + pstep*blktrace(blk,dX,Z) + dstep*blktrace(blk,X,dZ) ...
+ pstep*dstep*blktrace(blk,dX,dZ);
gappred = (normb*normC)*trXZpred;
mupred = trXZpred/nn;
mupredhist(iter) = mupred;
timenew = cputime;
ttime.pred_dstep = ttime.pred_dstep + timenew-timeold; timeold = timenew;
%%
%%-----------------------------------------
%% stopping criteria for predictor step.
%%-----------------------------------------
%%
if (min(pstep,dstep) < steptol) & (stoplevel)
if (printlevel)
fprintf('\n Stop: steps in predictor too short:');
fprintf(' pstep = %3.2e, dstep = %3.2e\n',pstep,dstep);
end
runhist.cputime(iter+1) = cputime-tstart;
termcode = -2;
breakyes = 1;
end
if (iter >= 2)
idx = [max(2,iter-2) : iter];
pred_slow = all(mupredhist(idx)./mupredhist(idx-1) > 0.4);
idx = [max(2,iter-5) : iter];
pred_convg_rate = mean(mupredhist(idx)./mupredhist(idx-1));
pred_slow = pred_slow + (mupred/mu > 5*pred_convg_rate);
end
if (~predcorr)
if (max(mu,infeas_meas) < 1e-6) & (pred_slow) & (stoplevel)
if (printlevel)
fprintf('\n Stop: lack of progress in predictor:');
fprintf(' mupred/mu = %3.2f, pred_convg_rate = %3.2f.',...
mupred/mu,pred_convg_rate);
end
runhist.cputime(iter+1) = cputime-tstart;
termcode = -1;
breakyes = 1;
else
update_iter = 1;
end
end
%%
%%---------------------------------------------------------------
%% corrector step.
%%---------------------------------------------------------------
%%
if (predcorr) & (~breakyes)
step_pred = min(pstep,dstep);
if (mu > 1e-6)
if (step_pred < 1/sqrt(3));
expon_used = 1;
else
expon_used = max(expon,3*step_pred^2);
end
else
expon_used = max(1,min(expon,3*step_pred^2));
end
sigma = min( 1, (mupred/mu)^expon_used );
sigmu = sigma*mu;
%%
if (vers == 1)
[dX,dy,dZ] = HKMcorr(blk,At,par,rp,Rd,sigmu,hRd,...
dX,dZ,coeff,L,X,Z);
elseif (vers == 2)
[dX,dy,dZ] = NTcorr(blk,At,par,rp,Rd,sigmu,hRd,...
dX,dZ,coeff,L,X,Z);
end
if (solve_ok <= 0)
fprintf('\n Stop: difficulty in computing corrector directions');
runhist.cputime(iter+1) = cputime-tstart;
termcode = -4;
break;
end
timenew = cputime;
ttime.corr = ttime.corr + timenew-timeold; timeold = timenew;
%%
%%-----------------------------------
%% step-lengths for corrector step
%%-----------------------------------
%%
if (gam == 0)
gamused = 0.9 + 0.09*min(pstep,dstep);
else
gamused = gam;
end
Xstep = steplength(blk,X,dX,Xchol,invXchol);
pstep = min(1,gamused*Xstep);
if (Xstep > .99e12) & (blktrace(blk,C,dX) < -1e-3) & (prim_infeas < 1e-3)
pstep = Xstep;
if (printlevel); fprintf('\n Corrector: dual seems infeasible.'); end
end
timenew = cputime;
ttime.corr_pstep = ttime.corr_pstep + timenew-timeold; timeold = timenew;
Zstep = steplength(blk,Z,dZ,Zchol,invZchol);
dstep = min(1,gamused*Zstep);
if (Zstep > .99e12) & (b'*dy > 1e-3) & (dual_infeas < 1e-3)
dstep = Zstep;
if (printlevel); fprintf('\n Corrector: primal seems infeasible.'); end
end
trXZcorr = trXZ + pstep*blktrace(blk,dX,Z) + dstep*blktrace(blk,X,dZ)...
+ pstep*dstep*blktrace(blk,dX,dZ);
gapcorr = (normb*normC)*trXZcorr;
mucorr = trXZcorr/nn;
timenew = cputime;
ttime.corr_dstep = ttime.corr_dstep + timenew-timeold; timeold = timenew;
%%
%%-----------------------------------------
%% stopping criteria for corrector step
%%-----------------------------------------
%%
if (iter >= 2)
idx = [max(2,iter-2) : iter];
corr_slow = all(runhist.gap(idx)./runhist.gap(idx-1) > 0.8);
idx = [max(2,iter-5) : iter];
corr_convg_rate = mean(runhist.gap(idx)./runhist.gap(idx-1));
corr_slow = corr_slow + (mucorr/mu > max(min(1,5*corr_convg_rate),0.8));
end
if (max(mu,infeas_meas) < 1e-6) & (iter > 10) & (corr_slow) & (stoplevel)
if (printlevel)
fprintf('\n Stop: lack of progress in corrector:');
fprintf(' mucorr/mu = %3.2f, corr_convg_rate = %3.2f',...
mucorr/mu,corr_convg_rate);
end
runhist.cputime(iter+1) = cputime-tstart;
termcode = -1;
breakyes = 1;
else
update_iter = 1;
end
end
%%
%%---------------------------------------------------------------
%% udpate iterate
%%---------------------------------------------------------------
%%
indef = [1,1];
if (update_iter)
for t = 1:5
[Xchol,indef(1)] = blkcholfun(blk,ops(X,'+',dX,pstep));
timenew = cputime;
ttime.pchol = ttime.pchol + timenew-timeold; timeold = timenew;
if (indef(1)); pstep = 0.8*pstep; else; break; end
end
if (t > 1); pstep = gamused*pstep; end
for t = 1:5
[Zchol,indef(2)] = blkcholfun(blk,ops(Z,'+',dZ,dstep));
timenew = cputime;
ttime.dchol = ttime.dchol + timenew-timeold; timeold = timenew;
if (indef(2)); dstep = 0.8*dstep; else; break; end
end
if (t > 1); dstep = gamused*dstep; end
AXtmp = AX + pstep*AXfun(blk,At,par.permA,dX);
prim_infeasnew = norm(b-AXtmp)/normb2;
if any(indef)
if (printlevel); fprintf('\n Stop: X, Z not both positive definite'); end
termcode = -3;
breakyes = 1;
elseif (prim_infeasnew > max([rel_gap,20*prim_infeas,1e-8])) ...
| (prim_infeasnew > max([1e-4,20*prim_infeas]) & (switch2LU))
if (stoplevel) & (max(pstep,dstep)<=1)
if (printlevel)
fprintf('\n Stop: primal infeas has deteriorated too much, %2.1e',prim_infeasnew);
end
termcode = -7;
breakyes = 1;
end
else
X = ops(X,'+',dX,pstep);
y = y+dstep*dy;
Z = ops(Z,'+',dZ,dstep);
end
end
%%---------------------------------------------------------------
%% adjust linear blk arising from unrestricted blk
%%---------------------------------------------------------------
%%
for p = 1:size(blk,1)
if (ublkidx(p) == 1)
len = blk{p,2}/2;
alpha = 0.8;
xtmp = min(X{p}([1:len]),X{p}(len+[1:len]));
X{p}([1:len]) = X{p}([1:len]) - alpha*xtmp;
X{p}(len+[1:len]) = X{p}(len+[1:len]) - alpha*xtmp;
if (mu < 1e-8)
Z{p} = 0.5*mu./max(1,X{p});
else
ztmp = min(1,max(Z{p}([1:len]),Z{p}(len+[1:len])));
beta1 = xtmp'*(Z{p}([1:len])+Z{p}(len+[1:len]));
beta2 = (X{p}([1:len])+X{p}(len+[1:len])-2*xtmp)'*ztmp;
beta = max(0.1,min(beta1/beta2,0.5));
Z{p}([1:len]) = Z{p}([1:len]) + beta*ztmp;
Z{p}(len+[1:len]) = Z{p}(len+[1:len]) + beta*ztmp;
end
end
end
%%
%%---------------------------------------------------------------
%% compute rp, Rd, infeasibities, etc.
%%---------------------------------------------------------------
%%
trXZ = blktrace(blk,X,Z);
gap = (normb*normC)*trXZ;
mu = trXZ/nn;
AX = AXfun(blk,At,par.permA,X);
rp = b-AX;
ZpATy = ops(Z,'+',Atyfun(blk,At,par.permA,par.isspAy,y));
ZpATynorm = ops(ZpATy,'norm');
Rd = ops(C,'-',ZpATy);
obj = (normb*normC)*[blktrace(blk,C,X), b'*y];
rel_gap = gap/(1+sum(abs(obj)));
prim_infeas = norm(rp)/normb2;
dual_infeas = ops(Rd,'norm')/normC2;
if (scale_data)
infeas_org(1) = norm(normA.*rp)*normb/normb2;
infeas_org(2) = ops(Rd,'norm')*normC/normC2;
end
infeas_meas = max(prim_infeas,dual_infeas);
if (obj(2) > 0); homRd = ZpATynorm/(obj(2)/(normb*normC)); else; homRd = inf; end
if (obj(1) < 0); homrp = norm(AX)/(-obj(1)/(normb*normC)); else; homrp = inf; end
runhist.pobj(iter+1) = obj(1);
runhist.dobj(iter+1) = obj(2);
runhist.gap(iter+1) = gap;
runhist.relgap(iter+1) = rel_gap;
runhist.pinfeas(iter+1) = prim_infeas;
runhist.dinfeas(iter+1) = dual_infeas;
runhist.infeas(iter+1) = infeas_meas;
runhist.step(iter+1) = min(pstep,dstep);
runhist.cputime(iter+1) = cputime-tstart;
timenew = cputime;
ttime.misc = ttime.misc + timenew-timeold; timeold = timenew;
[hh,mm,ss] = mytimed(sum(runhist.cputime));
if (printlevel>=3)
fprintf('\n%2.0f %4.3f %4.3f',iter,pstep,dstep);
fprintf(' %2.1e %2.1e %2.1e',prim_infeas,dual_infeas,gap);
fprintf(' %- 7.6e %d:%d:%d',mean(obj),hh,mm,ss);
end
%%
%%--------------------------------------------------
%% check convergence.
%%--------------------------------------------------
%%
param.iter = iter;
param.obj = obj;
param.rel_gap = rel_gap;
param.gap = gap;
param.mu = mu;
param.prim_infeas = prim_infeas;
param.dual_infeas = dual_infeas;
param.homRd = homRd;
param.homrp = homrp;
param.AX = AX;
param.ZpATynorm = ZpATynorm;
param.normX = ops(X,'norm');
param.normZ = ops(Z,'norm');
param.termcode = termcode;
param.stoplevel = stoplevel;
param.prim_infeas_bad = prim_infeas_bad;
%%
if (~breakyes)
[termcode,breakyes,prim_infeas_bad,restart] = sqlpcheckconvg(param,runhist);
end
if (breakyes); break; end
if (restart)
[X,y,Z] = infeaspt(blk,At,C,b,2,1e5);
trXZ = blktrace(blk,X,Z);
gap = (normb*normC)*trXZ;
mu = trXZ/nn;
rp = b-AXfun(blk,At,par.permA,X);
ZpATy = ops(Z,'+',Atyfun(blk,At,par.permA,par.isspAy,y));
Rd = ops(C,'-',ZpATy);
prim_infeas = norm(rp)/normb2;
dual_infeas = ops(Rd,'norm')/normC2;
infeas_meas = max(prim_infeas,dual_infeas);
[Xchol,indef(1)] = blkcholfun(blk,X);
[Zchol,indef(2)] = blkcholfun(blk,Z);
stoplevel = 3;
end
end
%%
%%---------------------------------------------------------------
%% end of main loop
%%---------------------------------------------------------------
%%
%%---------------------------------------------------------------
%% unscale and produce infeasibility certificates if appropriate
%%---------------------------------------------------------------
%%
if (iter >= 1)
param.termcode = termcode;
[X,y,Z,termcode,resid,reldist] = sqlpmisc(blk,At,C,b,X,y,Z,par.permZ,param);
end
%%
%%---------------------------------------------------------------
%% recover unrestricted blk from linear blk
%%---------------------------------------------------------------
%%
for p = 1:size(blk,1)
if (ublkidx(p) == 1)
n = blk{p,2}/2;
X{p} = X{p}(1:n)-X{p}(n+[1:n]);
Z{p} = Z{p}(1:n);
end
end
%%
%%---------------------------------------------------------------
%% print summary
%%---------------------------------------------------------------
%%
if (scale_data)
dimacs = [infeas_org(1); 0; infeas_org(2); 0];
else
dimacs = [prim_infeas; 0; dual_infeas; 0];
end
dimacs = [dimacs; [-diff(obj); gap]/(1+sum(abs(obj)))];
info.dimacs = dimacs;
info.termcode = termcode;
info.iter = iter;
info.obj = obj;
info.gap = gap;
info.relgap = rel_gap;
info.pinfeas = prim_infeas;
info.dinfeas = dual_infeas;
info.cputime = sum(runhist.cputime);
info.resid = resid;
info.reldist = reldist;
%%
nnorm.b = norm(b); nnorm.C = ops(C,'norm'); nnorm.A = ops(At,'norm');
nnorm.X = ops(X,'norm'); nnorm.y = norm(y); nnorm.Z = ops(Z,'norm');
sqlpsummary(info,ttime,infeas_org,nnorm,printlevel);
%%*****************************************************************************