Dynamic-Calibration/utils/SDPT3-4.0/Solver/Oldmfiles/scaling_old.m

77 lines
2.3 KiB
Matlab
Executable File

%%********************************************************************
%% scaling: scale the SDP data so that A_k,C,b have unit norm.
%%
%% [At,C,b,normA,normC,normb,X0,y0,Z0] = scaling(blk,At,C,b,X0,y0,Z0);
%%
%% Because of scaling, the objective function is modified:
%%
%% old obj function = (normb*normC) (new obj function).
%%
%% SDPT3: version 3.1
%% Copyright (c) 1997 by
%% K.C. Toh, M.J. Todd, R.H. Tutuncu
%% Last Modified: 16 Sep 2004
%%********************************************************************
function [At,C,b,normA,normC,normb,X0,y0,Z0] = scaling(blk,At,C,b,X0,y0,Z0);
m = length(b);
numblk = size(blk,1);
normA = zeros(m,1);
for p=1:numblk
pblk = blk(p,:);
if strcmp(pblk{1},'s')
m1 = size(At{p,1},2);
normA(1:m1) = normA(1:m1) + sqrt(sum(At{p,1}.*At{p,1}))';
if (length(pblk) > 2) %% for low rank constraints
dd = At{p,3};
m2 = m-m1;
ss = [0,cumsum(pblk{3})];
for k=1:m2
idx = [ss(k)+1:ss(k+1)];
V = At{p,2}(:,idx);
ii = dd(idx,1)-ss(k); %% undo cumulative indexing
jj = dd(idx,2)-ss(k);
len = pblk{3}(k);
D = spconvert([ii,jj,dd(idx,3); len,len,0]);
normA(m1+k) = normA(m1+k) + norm(V'*V*D,'fro');
end
end
else
normA = normA + sqrt(sum(At{p,1}.*At{p,1}))';
end
end
normA = max(1,normA);
%%
for p=1:numblk
pblk = blk(p,:);
if strcmp(pblk{1},'s')
m1 = size(At{p,1},2);
m2 = m - m1;
At{p,1} = At{p,1}*spdiags(1./normA(1:m1),0,m1,m1);
if (m2 > 0) %% for low rank constaints
yy2 = mexexpand(pblk{3},normA(m1+[1:m2]));
At{p,3}(:,3) = At{p,3}(:,3)./yy2;
end
else
At{p,1} = At{p,1}*spdiags(1./normA,0,m,m);
end
end
b = b./normA; normb = max(1,norm(b));
b = b/normb;
normC = 0;
for p=1:numblk
normC = normC + sum(sum(C{p}.*C{p}));
end
normC = sqrt(normC);
normC = max(1,normC);
y0 = y0.*normA/normC;
for p=1:numblk
C{p} = C{p}/normC;
X0{p} = X0{p}/normb;
Z0{p} = Z0{p}/normC;
end
%%********************************************************************