63 lines
1.8 KiB
Matlab
Executable File
63 lines
1.8 KiB
Matlab
Executable File
function varargout = hinge(varargin)
|
|
%HINGE Models convex operator max(0,x^p) for integer p>=1
|
|
%
|
|
% t = hinge(x,p)
|
|
|
|
|
|
switch class(varargin{1})
|
|
|
|
case 'double'
|
|
if nargin == 1
|
|
varargout{1} = max(0,varargin{1});
|
|
else
|
|
varargout{1} = max(0,varargin{1}.^varargin{2});
|
|
end
|
|
|
|
case 'sdpvar' % Overloaded operator for SDPVAR objects. Pass on args and save them.
|
|
X = varargin{1};
|
|
if nargin == 1
|
|
p = 2;
|
|
else
|
|
p = varargin{2};
|
|
end
|
|
if p <= 1
|
|
error('HINGE max(0,x^p) must have p>=1')
|
|
elseif ~(p==ceil(p))
|
|
error('HINGE max(0,x^p) must have integer p')
|
|
elseif p == 1
|
|
varargout{1} = max(0,X);
|
|
else
|
|
varargout{1} = yalmip('define',mfilename,X,p);
|
|
end
|
|
|
|
case 'char' % YALMIP send 'model' when it wants the epigraph or hypograph
|
|
if isequal(varargin{1},'graph')
|
|
t = varargin{2}; % Second arg is the extended operator variable
|
|
X = varargin{3}; % Third arg and above are the args user used when defining t.
|
|
p = varargin{4};
|
|
|
|
convexity = 'convex';
|
|
if ~even(p)
|
|
monotonicity = 'increasing';
|
|
else
|
|
monotonicity = 'none';
|
|
end
|
|
|
|
e = sdpvar(1);
|
|
F = [e >= X, pospower(e,t,p)];
|
|
|
|
varargout{1} = F;
|
|
varargout{2} = struct('convexity',convexity,'monotonicity',monotonicity,'definiteness','positive','model','graph');
|
|
varargout{3} = X;
|
|
end
|
|
otherwise
|
|
end
|
|
|
|
function F = pospower(x,t,p)
|
|
q = 1;
|
|
l = ceil(log2(abs(p)));
|
|
r = 2^l-p;
|
|
y = [ones(r,1)*x;ones(q,1)*t;ones(2^l-r-q,1)];
|
|
F = detset(x,y);
|
|
|