164 lines
5.0 KiB
Matlab
Executable File
164 lines
5.0 KiB
Matlab
Executable File
function varargout = dilate(F,w,options)
|
||
% DILATE Derives a matrix dilation
|
||
%
|
||
% [G,H,M] = DILATE(X,w,options) where X is a symmetric variable derives the
|
||
% decomposition and orthogonal complement used in a matrix dilation.
|
||
%
|
||
% X is decomposed as M(w)´G(x)M(w), and H(w) is an orthogonal complement to
|
||
% M(w), with affine dependence in w. These matrices can be used to apply
|
||
% the matrix dilation lemma to obtain a sufficient constraint affine in w
|
||
%
|
||
% M(w)´G(x)M(w) > 0 <== existence of W s.t with G + W*H' + H*W' > 0
|
||
%
|
||
% F = DILATE(F,w,options) where F is a SET is used to construct the dilated
|
||
% uncertain constraint, i.e an SDP constraint where polynomial dependence
|
||
% w.r.t uncertain variables in all SDP constraints in F are converted
|
||
% (conservatively) to affine dependence using the matrix dilation approach.
|
||
%
|
||
% The SDPSETTING options structure is optional, but recommended if you call
|
||
% dilate repeatedly (avoids calling SDPSETTINGS inside DILATE)
|
||
%
|
||
% See Yasuaki OISHI, A Region-Dividing Approach to Robust Semidefinite
|
||
% Programming and Its Error Bound,DEPARTMENT OF MATHEMATICAL INFORMATICS
|
||
% GRADUATE SCHOOL OF INFORMATION SCIENCE AND TECHNOLOGY THE UNIVERSITY OF
|
||
% TOKYO BUNKYO-KU, TOKYO 113-8656, JAPAN , February 2006
|
||
%
|
||
% J. Löfberg, Improved matrix dilations for robust semidefinite programming
|
||
% Division of Automatic control, Department of Electrical Engineering,
|
||
% Technical report 2753, Linköpings universitet, November 2006
|
||
%
|
||
% See also ROBUSTIFY, SOLVEROBUST, UNCERTAIN
|
||
|
||
if nargin < 3
|
||
options = sdpsettings;
|
||
end
|
||
|
||
if isa(F,'constraint')
|
||
F = (F);
|
||
end
|
||
|
||
if isa(F,'sdpvar')
|
||
[G,H,M] = matrix_dilate(F,w,options);
|
||
varargout{1} = G;
|
||
varargout{2} = H;
|
||
varargout{3} = M;
|
||
elseif isa(F,'lmi')
|
||
Fnew = [];
|
||
if nargin == 1
|
||
w = [];
|
||
else
|
||
w = w(:);
|
||
end
|
||
unc_declarations = is(F,'uncertain');
|
||
if any(unc_declarations)
|
||
w = [w;recover(getvariables(sdpvar(F(find(unc_declarations)))))];
|
||
end
|
||
for i = 1:length(F)
|
||
if (is(F(i),'sdp') | ((length(sdpvar(F(i))) == 1) & is(F(i),'elementwise'))) & max(degree(sdpvar(F(i)),w))>0
|
||
[G,H,M] = matrix_dilate(sdpvar(F(i)),w,options);
|
||
W = sdpvar(size(G,1),size(H,2));
|
||
Fnew = Fnew + (G + W*H' + H*W' >= 0);
|
||
else
|
||
Fnew = Fnew + F(i);
|
||
end
|
||
end
|
||
varargout{1} = Fnew;
|
||
end
|
||
|
||
|
||
function [G,H,M] = matrix_dilate(F,w,options)
|
||
% Given an SDP F(x,w) with F polynomial in w, DILATE rewrites the problem
|
||
% to F(x,w)=M(w)'G(x)M(w), and derives the orhogonal complements H(w) to
|
||
% M(w), to be used in the dilated constraint G + W*H' + H*W'
|
||
|
||
% Parametric variables in SOS i.e. the certain variables
|
||
x = recover(setdiff(depends(F),depends(w)));
|
||
v = monolist(w,ceil(max(degree(F,w)/2)));
|
||
options.sos.newton = 0;
|
||
options.sos.model = 2;
|
||
options.sos.scale = 0;
|
||
options.verbose = 0;
|
||
options.sos.conggruence = 0;
|
||
[G,dummy,m] = compilesos((sos(F)),[],options,x,v);
|
||
G = sdpvar(G);
|
||
|
||
allvariables = getvariables(F);
|
||
wvariables = getvariables(w);
|
||
Fbasis = getbase(F);
|
||
|
||
% Make sure it is ordered according to internal index
|
||
w = recover(wvariables);
|
||
|
||
% Degrees w.r.t the uncertain variables
|
||
d = degree(recover(allvariables),w);
|
||
|
||
% robustify code by removing unused variables
|
||
w = w(find(d));
|
||
wvariables = wvariables(find(d));
|
||
|
||
% Degrees w.r.t the uncertain variables
|
||
monomtable = yalmip('monomtable');
|
||
d = max(sum(monomtable(allvariables,wvariables),2));
|
||
n = size(F,1);
|
||
|
||
% Sufficiently many monomials
|
||
v = m{1};%monolist(w,max(d));
|
||
v = v(1:(size(v,1)/size(v,2)),1);
|
||
% Some numerical format on these variables
|
||
for i = 2:length(v)
|
||
vvariables(i,1) = getvariables(v(i));
|
||
end
|
||
monomtable = yalmip('monomtable');
|
||
wmonoms = [zeros(1,length(w));monomtable(vvariables(2:end),wvariables)];
|
||
|
||
% Find the linear certain term in the matrix
|
||
linear_indicies = find(sum(monomtable(allvariables,wvariables),2) ==0);
|
||
if length(linear_indicies) > 0
|
||
F0 = reshape(Fbasis(:,1) + Fbasis(:,1+linear_indicies)*recover(allvariables(linear_indicies)),n,n);
|
||
else
|
||
F0 = reshape(Fbasis(:,1),n,n);
|
||
end
|
||
|
||
% now find the matrix that multiplies with each monomial in M
|
||
|
||
% Fi = [];
|
||
% Fmonoms = monomtable(allvariables,wvariables);
|
||
% for i = 2:length(v)
|
||
% vmonoms = monomtable(vvariables(i),wvariables);
|
||
% index = findrows(Fmonoms,vmonoms);
|
||
% if isempty(index)
|
||
% Fi = [Fi zeros(n)];
|
||
% else
|
||
% temp = monomtable(allvariables(index),:);
|
||
% temp(wvariables) = 0;
|
||
% base = reshape(Fbasis(:,1+index),n,n);
|
||
% if nnz(temp) == 0
|
||
% Fi = [Fi base];
|
||
% else
|
||
% Fi = [Fi base*recover(allvariables(find(temp)))];
|
||
% end
|
||
% end
|
||
% end
|
||
% G = [F0 Fi/2;Fi'/2 zeros(n*(length(v)-1))];
|
||
|
||
% The outer factor
|
||
M = m{1};%kron(v,eye(n));
|
||
|
||
% Now create an orthogonal complement to M
|
||
ii = [];
|
||
jj = [];
|
||
ss = [];
|
||
for i = 2:length(v)
|
||
monom = wmonoms(i,:);
|
||
[dummy,index] = max(monom);
|
||
monomnew = monom;
|
||
monomnew(index) = monomnew(index) - 1;
|
||
ii = [ii i];
|
||
jj = [jj i-1];
|
||
ss = [ss 1];
|
||
ii = [ii findrows(wmonoms,monomnew)];
|
||
jj = [jj i-1];
|
||
ss = [ss -recover(wvariables(index))];
|
||
end
|
||
H = kron(sparse(ii,jj,ss),eye(n));
|