253 lines
7.1 KiB
Matlab
Executable File
253 lines
7.1 KiB
Matlab
Executable File
function [base,v] = matrixcoefficients(p,x)
|
||
%MATRIXCOEFFICIENTS Extends coefficients, beta
|
||
|
||
% FIX: CURRENTLY UNSTABLE!
|
||
|
||
if nargout>1 & (max(size(p))>1)
|
||
% error('For matrix inputs, only the coefficients can be returned. Request feature if you need this...');
|
||
end
|
||
|
||
% Hack to make sure we get the basis w.r.t all variables and 1
|
||
% This has to be fixed soon (to make robust opt. module fast)
|
||
p = p + pi + sum(x)*1e-5;
|
||
|
||
if nargin==1
|
||
allvar = depends(p);
|
||
xvar = allvar;
|
||
x = recover(xvar);
|
||
else
|
||
xvar = intersect(depends(x),depends(p));
|
||
end
|
||
|
||
% Try to debug this!
|
||
p = p(:);
|
||
base = [];
|
||
v = [];
|
||
allvar = depends(p);%(ii));
|
||
allvar_recovered = recover(allvar);
|
||
t = setdiff(allvar,xvar);
|
||
t_recovered = recover(t);
|
||
ParametricIndicies = find(ismember(allvar,t));
|
||
map = find(~ismember(allvar,t));
|
||
|
||
for ii = 1:length(p)
|
||
pii = p(ii);
|
||
[exponent_p,p_base] = getexponentbase(pii,allvar_recovered);
|
||
|
||
tempbase = parameterizedbase(pii,[],t_recovered,ParametricIndicies,exponent_p,p_base);
|
||
[i,j,k] = unique(full(exponent_p(:,map)),'rows');
|
||
|
||
|
||
V = sparse(1:length(k),k,1,length(tempbase),max(k))';
|
||
|
||
base{ii} = V*tempbase - [pi;repmat(1e-5,length(x),1)];
|
||
|
||
keepthese = j(1:max(k));
|
||
v{ii} = recovermonoms(exponent_p(keepthese,map),x);%recover(xvar));
|
||
end
|
||
|
||
|
||
|
||
|
||
|
||
|
||
function p_base_parametric = parameterizedbase(p,z, params,ParametricIndicies,exponent_p,p_base)
|
||
|
||
% Check for linear parameterization
|
||
parametric_basis = exponent_p(:,ParametricIndicies);
|
||
if all(sum(parametric_basis,2)==0)
|
||
p_base_parametric = full(p_base(:));
|
||
return
|
||
end
|
||
if all(sum(parametric_basis,2)<=1)
|
||
p_base_parametric = full(p_base(:));
|
||
n = length(p_base_parametric);
|
||
ii = [];
|
||
vars = [];
|
||
js = sum(parametric_basis,1);
|
||
for i = 1:size(parametric_basis,2)
|
||
if js(i)
|
||
j = find(parametric_basis(:,i));
|
||
ii = [ii j(:)'];
|
||
vars = [vars repmat(i,1,js(i))];
|
||
end
|
||
end
|
||
k = setdiff1D(1:n,ii);
|
||
if isempty(k)
|
||
p_base_parametric = p_base_parametric.*sparse(ii,repmat(1,1,n),params(vars));
|
||
else
|
||
pp = params(vars); % Must do this, bug in ML 6.1 (x=sparse(1);x([1 1]) gives different result in 6.1 and 7.0!)
|
||
temp = sparse([ii k(:)'],repmat(1,1,n),[pp(:)' ones(1,1,length(k))]);
|
||
p_base_parametric = p_base_parametric.*temp;
|
||
end
|
||
else
|
||
% Bummer, nonlinear parameterization sucks...
|
||
for i = 1:length(p_base)
|
||
j = find(exponent_p(i,ParametricIndicies));
|
||
if ~isempty(j)
|
||
temp = p_base(i);
|
||
for k = 1:length(j)
|
||
if exponent_p(i,ParametricIndicies(j(k)))==1
|
||
temp = temp*params(j(k));
|
||
else
|
||
temp = temp*params(j(k))^exponent_p(i,ParametricIndicies(j(k)));
|
||
end
|
||
end
|
||
xx{i} = temp;
|
||
else
|
||
xx{i} = p_base(i);
|
||
end
|
||
end
|
||
p_base_parametric = stackcell(sdpvar(1,1),xx)';
|
||
end
|
||
|
||
|
||
|
||
%
|
||
%
|
||
%
|
||
%
|
||
%
|
||
% function [base,v] = coefficients(p,x)
|
||
% %COEFFICIENTS Extract coefficients and monomials from polynomials
|
||
% %
|
||
% % [c,v] = COEFFICIENTS(p,x) extracts the coefficents
|
||
% % of a polynomial p(x) = c'*v(x)
|
||
% %
|
||
% % INPUT
|
||
% % p : SDPVAR object
|
||
% % x : SDPVAR object
|
||
% %
|
||
% % OUTPUT
|
||
% % c : SDPVAR object
|
||
% % v : SDPVAR object
|
||
% %
|
||
% % EXAMPLE
|
||
% % sdpvar x y s t
|
||
% % p = x^2+x*y*(s+t)+s^2+t^2; % define p(x,y), parameterized with s and t
|
||
% % [c,v] = coefficients(p,[x y]);
|
||
% % sdisplay([c v])
|
||
% %
|
||
% % See also SDPVAR
|
||
%
|
||
% % Author Johan L<>fberg
|
||
% % $Id: matrixcoefficients.m,v 1.4 2006-08-09 12:14:04 joloef Exp $
|
||
%
|
||
%
|
||
% if length(p) > 1%size(p,2) > 1
|
||
% error('Coefficents can only be applied to column vectors');
|
||
% end
|
||
%
|
||
% allvar = depends(p);
|
||
% if nargin==1
|
||
% xvar = allvar;
|
||
% x = recover(xvar);
|
||
% else
|
||
% xvar = depends(x);
|
||
% end
|
||
%
|
||
% pvar = recover(depends(p));
|
||
%
|
||
% base = [];
|
||
% for i = 1:length(p)
|
||
% [bi{i},vi{i}] = coefficientsi(p(i),xvar,pvar,allvar);
|
||
% end
|
||
%
|
||
% % Fix the lengths of the basis to use same basis for all elements
|
||
% if length(bi)>1
|
||
% allvars = [];
|
||
% for i = 1:length(bi)
|
||
% bivar{i} = getvariables(vi{i});
|
||
% if isequal(vi{i}(1),1)
|
||
% bivar{i} = [0 bivar{i}];
|
||
% end
|
||
% allvars = unique([allvars bivar{i}]);
|
||
% end
|
||
% v = recover(allvars);
|
||
% c = zeros(length(p),length(allvars))';
|
||
% ci = [];
|
||
% cj = [];
|
||
% cv = [];
|
||
% for i = 1:length(bi)
|
||
% index = find(ismember(allvars,bivar{i}));
|
||
% ci = [ci index];
|
||
% cj = [cj repmat(i,1,length(index))];
|
||
% cv = [cv bi{i}'];
|
||
% end
|
||
% base = sparse(ci,cj,cv);
|
||
% else
|
||
% base = bi{1};
|
||
% v = vi{1};
|
||
% end
|
||
%
|
||
%
|
||
% function [base,v] = coefficientsi(p,xvar,pvar,allvar)
|
||
%
|
||
% % Try to debug this!
|
||
% t = setdiff(allvar,xvar);
|
||
% [exponent_p,p_base] = getexponentbase(p,pvar);
|
||
% ParametricIndicies = find(ismember(allvar,t));
|
||
% % FIX : don't define it here, wait until sparser below. Speed!!
|
||
% tempbase = parameterizedbase(p,[],recover(t),ParametricIndicies,exponent_p,p_base);
|
||
% [i,j,k] = unique(full(exponent_p(:,find(~ismember(allvar,t)))),'rows');
|
||
% %V = sparse(max(k),length(tempbase));
|
||
% %for i = 1:max(k)
|
||
% % V(i,find(k==i)) = 1;
|
||
% %end
|
||
% V = sparse(1:length(k),k,1,length(tempbase),max(k))';
|
||
% base = V*tempbase;
|
||
% if nargout == 2
|
||
% keepthese = j(1:max(k));
|
||
% v = recovermonoms(exponent_p(keepthese,find(~ismember(allvar,t))),recover(xvar));
|
||
% end
|
||
%
|
||
%
|
||
% function p_base_parametric = parameterizedbase(p,z, params,ParametricIndicies,exponent_p,p_base)
|
||
%
|
||
% % Check for linear parameterization
|
||
% parametric_basis = exponent_p(:,ParametricIndicies);
|
||
% if all(sum(parametric_basis,2)==0)
|
||
% p_base_parametric = full(p_base(:));
|
||
% return
|
||
% end
|
||
% if all(sum(parametric_basis,2)<=1)
|
||
% p_base_parametric = full(p_base(:));
|
||
% n = length(p_base_parametric);
|
||
% ii = [];
|
||
% vars = [];
|
||
% js = sum(parametric_basis,1);
|
||
% for i = 1:size(parametric_basis,2)
|
||
% if js(i)
|
||
% j = find(parametric_basis(:,i));
|
||
% ii = [ii j(:)'];
|
||
% vars = [vars repmat(i,1,js(i))];
|
||
% end
|
||
% end
|
||
% k = setdiff1D(1:n,ii);
|
||
% if isempty(k)
|
||
% p_base_parametric = p_base_parametric.*sparse(ii,repmat(1,1,n),params(vars));
|
||
% else
|
||
% pp = params(vars); % Must do this, bug in ML 6.1 (x=sparse(1);x([1 1]) gives different result in 6.1 and 7.0!)
|
||
% p_base_parametric = p_base_parametric.*sparse([ii k(:)'],repmat(1,1,n),[pp(:)' ones(1,1,length(k))]);
|
||
% end
|
||
% else
|
||
% % Bummer, nonlinear parameterization sucks...
|
||
% for i = 1:length(p_base)
|
||
% j = find(exponent_p(i,ParametricIndicies));
|
||
% if ~isempty(j)
|
||
% temp = p_base(i);
|
||
% for k = 1:length(j)
|
||
% if exponent_p(i,ParametricIndicies(j(k)))==1
|
||
% temp = temp*params(j(k));
|
||
% else
|
||
% temp = temp*params(j(k))^exponent_p(i,ParametricIndicies(j(k)));
|
||
% end
|
||
% end
|
||
% xx{i} = temp;
|
||
% else
|
||
% xx{i} = p_base(i);
|
||
% end
|
||
% end
|
||
% p_base_parametric = stackcell(sdpvar(1,1),xx)';
|
||
% end
|