Dynamic-Calibration/utils/YALMIP-master/extras/expandrecursive.m

265 lines
12 KiB
Matlab
Executable File

function [F_expand,failure,cause] = expandrecursive(variable,F_expand,extendedvariables,monomtable,variabletype,where,level,options,method,extstruct,goal_vexity,allExtStruct,w)
% Some crazy stuff to help out when hand;ling nonocnvex and other
% non-standard problems
global DUDE_ITS_A_GP ALREADY_MODELLED ALREADY_MODELLED_INDEX REMOVE_THESE_IN_THE_END MARKER_VARIABLES OPERATOR_IN_POLYNOM LUbounds CONSTRAINTCUTSTATE
% Assume no failure due to failed model or convexity propagation
cause = '';
failure = 0;
% We only expand this variable if it hasn't already been modelled in
% another constraint, and that model is sufficicent for the current case.
if ~alreadydone(getvariables(variable),method,goal_vexity)
% Request model for this variable
ext_index = find(getvariables(variable) == extendedvariables);
% [F_graph,properties,arguments,fcn] = model(variable,method,options,extstruct);
[properties,F_graph,arguments,fcn] = model(variable,method,options,allExtStruct(ext_index),w);
% If properties has length longer than one, it means that several
% definitions have been returned. We should now compare the bounds
% available in the global variable LUbounds, with the domain for these
% different definitions.
if length(properties)>1
all_definitions = properties;
properties = properties{1};
% Assume that the first model is the global one
for i = 2:length(all_definitions)
if (all_definitions{i}.domain(1)<= LUbounds(getvariables(arguments),1)) & (all_definitions{i}.domain(2)>= LUbounds(getvariables(arguments),2))
properties = all_definitions{i};
break
end
end
else
if ~isempty(properties)
properties = properties{1};
end
end
% Bit of a hack (CPLEX sucks on some trivial problems, so we have to track
% these simple models and fix them in the end). Basically, when a
% constraint such as ismember(x,B) is used, YALMIP introduces a "marker
% variable" and returns the constraint marker == 1. This constraint and
% variable should be removed in the end, it is only used to ensure that
% the operator code is run. CPLEX can fail on this idiot constraints.
if ~isempty(properties)
if isfield(properties,'extra')
if strcmp(properties.extra,'marker')
MARKER_VARIABLES = [MARKER_VARIABLES getvariables(variable)];
end
end
end
% If we are running a graph representation, we have to make sure that
% we really are satisfying the convexity constraints
if isequal(method,'graph')
if isempty(properties)
failure = 1;
exactmodel = 0;
else
failure = ~isequal(properties.convexity,goal_vexity);
exactmodel = any(strcmpi(properties.model,{'callback','exact','integer'}));
end
if failure & ~options.allownonconvex
failure = 1;
cause = ['Expected ' goal_vexity ' function in ' where ' at level ' num2str(level)];
return
end
if failure & exactmodel
% This operator is guaranteed to return the associated value
% (i.e. it is not modelled by graphs) and can thus be used in
% the model. However, we have to give up convexity propagation
% since it didn't satisfy the convexity requirements
failure = 0;
method = 'exact';
else
if failure & options.allowmilp
[properties,F_graph,arguments,fcn] = model(variable,'exact',options,allExtStruct(ext_index),w);
if ~isempty(properties)
properties = properties{1};
end
if isempty(F_graph)
switch fcn
case 'sqrt'
cause = [cause 'See https://yalmip.github.io/squareroots/'];
case 'norm'
cause = [cause 'Only 1- and inf-norms can be used in a nonconvex fashion'];
otherwise
cause = [cause 'The function ' fcn ' does not have an implementation when entering in a ' goal_vexity ' fashion '];
end
return
else
failure = 0;
method = properties.model;
end
elseif failure
cause = ['Expected ' 'goal_vexity' ' function in ' where ' at level ' num2str(level)];
end
end
else
if isempty(F_graph)
cause = ['Model not available in ' where ' at level ' num2str(level)];
failure = 1;
return
else
failure = 0;
method = 'exact';
end
end
% We save variable models for future use
if failure == 0
done = save_model_expansion(method,goal_vexity,F_graph,properties);
if done
return
end
end
% Now we might have to recurse
if isa(arguments,'sdpvar')
if max(size(arguments))>1
arguments = reshape(arguments,prod(size(arguments)),1);
else
try
if length(getvariables(arguments)) == 1 && isequal(getbase(arguments),[0 1])
else
arguments = recover(getvariables(arguments));
end
catch
end
end
end
[ix,jx,kx] = find(monomtable(getvariables(variable),:));
if ~isempty(jx) % Bug in 6.1
if any(kx>1)
OPERATOR_IN_POLYNOM = [OPERATOR_IN_POLYNOM extendedvariables(jx(find(kx>1)))];
end
end
% Small pre-processing to speed-up large-scale problems (subsref sloooow)
% with only linear arguments (such as norm(Ax-b) problems)
if isa(arguments,'sdpvar')
argvars = getvariables(arguments);
if max(argvars)>length(variabletype)
variabletype = yalmip('variabletype');
end
do_not_check_nonlinearity = ~any(variabletype(argvars));
if do_not_check_nonlinearity
allvariables = argvars;
fullbasis = getbase(arguments);
fullbasis = fullbasis(:,2:end);
fullbasis_transpose = fullbasis';
end
else
do_not_check_nonlinearity = 0;
end
j = 1;
% Ok, here goes the actual recursive code
while j<=length(arguments) & ~failure
if length(extendedvariables)==1
% Optiize for the special case that the whole model only
% contains 1 single nonlinear operator. If that i the case, we
% do not need to do recursive stuff. This can save time in some
% etremely large simple model
expressionvariables = [];
else
if do_not_check_nonlinearity
usedvariables = find(fullbasis_transpose(:,j));
expressionvariables = allvariables(usedvariables);
else
expression = arguments(j);
expressionvariables = unique([depends(expression) getvariables(expression)]);
end
end
index_in_expression = find(ismembcYALMIP(expressionvariables,extendedvariables));
if ~isempty(index_in_expression)
for i = index_in_expression
if ~milpalreadydone(expressionvariables(i))
if do_not_check_nonlinearity
basis = fullbasis(j,usedvariables((i)));
else
basis = getbasematrix(expression,expressionvariables(i));
end
go_convex1 = (basis > 0) & isequal(goal_vexity,'convex') & isequal(properties.monotonicity,'increasing');
go_convex2 = (basis <= 0) & isequal(goal_vexity,'convex') & isequal(properties.monotonicity,'decreasing');
go_convex3 = (basis <= 0) & isequal(goal_vexity,'concave') & isequal(properties.monotonicity,'increasing');
go_convex4 = (basis > 0) & isequal(goal_vexity,'concave') & isequal(properties.monotonicity,'decreasing');
go_convex = (go_convex1 | go_convex2 | go_convex3 | go_convex4) & ~strcmpi(method,'integer');
go_concave1 = (basis > 0) & isequal(goal_vexity,'convex') & isequal(properties.monotonicity,'decreasing');
go_concave2 = (basis <= 0) & isequal(goal_vexity,'convex') & isequal(properties.monotonicity,'increasing');
go_concave3 = (basis <= 0) & isequal(goal_vexity,'concave') & isequal(properties.monotonicity,'decreasing');
go_concave4 = (basis > 0) & isequal(goal_vexity,'concave') & isequal(properties.monotonicity,'increasing');
go_concave = (go_concave1 | go_concave2 | go_concave3 | go_concave4) & ~strcmpi(method,'integer');
if go_convex
[F_expand,failure,cause] = expandrecursive(recover(expressionvariables(i)),F_expand,extendedvariables,monomtable,variabletype,where,level+1,options,method,[],'convex',allExtStruct,w);
elseif go_concave
[F_expand,failure,cause] = expandrecursive(recover(expressionvariables(i)),F_expand,extendedvariables,monomtable,variabletype,where,level+1,options,method,[],'concave',allExtStruct,w);
elseif isequal(properties.monotonicity,'exact')
[F_expand,failure,cause] = expandrecursive(recover(expressionvariables(i)),F_expand,extendedvariables,monomtable,variabletype,where,level+1,options,method,[],goal_vexity,allExtStruct,w);
else
if options.allownonconvex%milp
[F_expand,failure,cause] = expandrecursive(recover(expressionvariables(i)),F_expand,extendedvariables,monomtable,variabletype,where,level+1,options,'exact',[],'none',allExtStruct,w);
else
failure = 1;
cause = ['Monotonicity required at ' where ' at level ' num2str(level)];
end
end
end
end
end
if ~do_not_check_nonlinearity & ~DUDE_ITS_A_GP & ~options.expandbilinear & ~options.allownonconvex
if isa(expression,'sdpvar')
if degree(expression)~=1 &~is(expression,'sigmonial')
[Q,c,f,x,info] = quaddecomp(expression);
if info
failure = 1;
cause = ['Polynomial expression at ' where ' at level ' num2str(level)];
else
eigv = real(eig(Q));
if ~all(diff(sign(eigv))==0)
failure = 1;
cause = ['Indefinite quadratic in ' where ' at level ' num2str(level)];
else
fail1 = isequal(goal_vexity,'convex') & all(eigv<=0) & ~isequal(properties.monotonicity,'decreasing');
fail2 = isequal(goal_vexity,'convex') & all(eigv>0) & ~isequal(properties.monotonicity,'increasing');
fail3 = isequal(goal_vexity,'concave') & all(eigv<=0) & ~isequal(properties.monotonicity,'increasing');
fail4 = isequal(goal_vexity,'concave') & all(eigv>0) & ~isequal(properties.monotonicity,'decreasing');
if fail1 | fail3
failure = 1;
cause = ['Concave quadratic encountered in ' where ' at level ' num2str(level)];
elseif fail2 | fail4
failure = 1;
cause = ['Convex quadratic encountered in ' where ' at level ' num2str(level)];
end
end
end
end
end
end
j = j+1;
end
% If the variable modelled originates in a constraint which is a cut in
% the global solver, all defined constraints are also cuts
if isa(F_graph,'lmi') | isa(F_graph,'constraint') & CONSTRAINTCUTSTATE
F_graph = setcutflag(lmi(F_graph),CONSTRAINTCUTSTATE);
end
F_expand = F_expand + F_graph;
end