%%************************************************************************* %% ToeplitzApprox: find the nearest symmetric positive definite Toeplitz %% matrix to a given symmetric matrix F. %% %% max -y(n+1) %% s.t. T(y(1:n)) + y(n+1)*B >= 0 %% [I 0 ] + sum_{k=1}^n y(k) [0 gam(k)*e_k ] + y(n+1)*B >= 0 %% [0 -beta] [gam(k)*e_k' -2q(k) ] %% %% where B = diag([zeros(n,1); 1]) %% q(1) = - Tr(F); q(k+1) = -sum of upper and lower kth diagonals of F %% gam(1) = sqrt(n); gam(k) = sqrt(2*(n-k+1)) for k=2:n %% beta = norm(F,'fro')^2 %%***************************************************************** %% SDPT3: version 4.0 %% Copyright (c) 1997 by %% Kim-Chuan Toh, Michael J. Todd, Reha H. Tutuncu %% Last Modified: 16 Sep 2004 %%***************************************************************** function [blk,At,C,b] = ToeplitzApprox(F) n = length(F); gam = sqrt([n, 2*(n-1:-1:1)]); q = zeros(n,1); q(1) = -sum(diag(F)); for k=1:n-1 q(k+1) = -2*sum(diag(F,k)); end beta = norm(F,'fro')^2; blk{1,1} = 's'; blk{1,2} = n+1; blk{2,1} = 's'; blk{2,2} = n+1; b = [zeros(n,1); -1]; C{1,1} = sparse(n+1,n+1); C{2,1} = spdiags([ones(n,1); -beta],0,n+1,n+1); Acell = cell(1,n+1); Acell{1} = -spdiags([ones(n,1); 0],0,n+1,n+1); for k = 1:n-1 tmp = -spdiags([ones(n,1); 0],k,n+1,n+1); Acell{k+1} = tmp + tmp'; end Acell{n+1} = -spconvert([n+1,n+1,1]); At(1,1) = svec(blk(1,:),Acell,1); for k = 1:n Acell{k} = -spconvert([k, n+1, gam(k); n+1, k, gam(k); n+1, n+1, -2*q(k)]); end Acell{n+1} = -spconvert([n+1,n+1,1]); At(2,1) = svec(blk(2,:),Acell,1); %%***********************************************************************