function Y = screw_regressor2(q,q_d,q_2d,ur10) gamma0 = [0, 0, 9.81, 0, 0, 0]'; %gravity acceleration vector T_pk = zeros(4,4,6); %homogenous transformation from p to k invAd_pk = zeros(6,6,6); %inverse of adjoint matrix from p to k invAd_0k = zeros(6,6,7); invAd_0k(:,:,1) = eye(6,6); Jk = zeros(6,6,7); %jacobian up to body k adj_pk = zeros(6,6,6); adj_0k = zeros(6,6,6); xi_k = zeros(6,6); v_k = zeros(6,7); Jk_d = zeros(6,6,7); FI_k = zeros(6,6,6); Y = []; for i = 1:1:6 jnt_axs_k = ur10.rot_axes(:,i); T_pj = ur10.T_pj(:,:,i); R_jk = Rot(q(i),jnt_axs_k); p_jk = zeros(3,1); T_jk = [R_jk, p_jk; zeros(1,3),1]; T_pk(:,:,i) = T_pj*T_jk; invAd_pk(:,:,i) = inv_Ad_transf(T_pk(:,:,i)); invAd_0k(:,:,i+1) = invAd_pk(:,:,i)*invAd_0k(:,:,i); Jk(:,:,i+1) = invAd_pk(:,:,i)*Jk(:,:,i) + ur10.XI(:,:,i); xi_k(:,i) = ur10.XI(:,:,i)*q_d; v_k(:,i+1) = invAd_pk(:,:,i)*v_k(:,i) + xi_k(:,i); adj_pk(:,:,i) = adj_transf(xi_k(:,i)); adj_0k(:,:,i) = adj_transf(v_k(:,i+1)); FI_k(:,:,i) = ur10.Lmbd_k(:,:,i)*adj_0k(:,:,i) - adj_0k(:,:,i)'*ur10.Lmbd_k(:,:,i); Jk_d(:,:,i+1) = invAd_pk(:,:,i)*Jk_d(:,:,i) - adj_pk(:,:,i)*invAd_pk(:,:,i)*Jk(:,:,i); gamma_k = invAd_0k(:,:,i+1)*gamma0; %body gravitational acceleration % ------------------------------------------------------------------------ % Estimateing Regressor % ------------------------------------------------------------------------ r_k = ur10.r_com(:,i); alpha_k = Jk(:,:,i+1)*q_2d + adj_0k(:,:,i)*Jk(:,:,i+1)*q_d + Jk_d(:,:,i+1)*q_d + gamma_k; t1 = vec2skewSymMat(r_k); t2 = vec2skewSymMat(alpha_k(4:6)); A1 = [alpha_k(1:3), t2, zeros(3,6); zeros(3,1), -vec2skewSymMat(alpha_k(1:3)) + t1*t2, ... vec2mat_ssmat(alpha_k(4:6))]; t4 = Jk(:,:,i+1)*q_d; t5 = vec2skewSymMat(t4(4:6)); A2 = [t4(1:3), t5, zeros(3,6); zeros(3,1), -vec2skewSymMat(t4(1:3)) + t1*t5,... vec2mat_ssmat(t4(4:6))]; t6 = A1 - adj_0k(:,:,i)'*A2; Y = [Y, Jk(:,:,i+1)'*t6]; % ------------------------------------------------------------------------ end