% ------------------------------------------------------------------------ % Load data and procces it (filter and estimate accelerations) % ------------------------------------------------------------------------ run('data_prcsng.m') % run('data_pltng.m') % ------------------------------------------------------------------------ % Generate Regressors based on data % ------------------------------------------------------------------------ % Load matrices that map standard set of paratmers to base parameters load('full2base_mapping.mat'); m_load = 1.069; %Constracting regressor matrix Wb_uldd = []; I_uldd = []; for i = 1:2:length(t_msrd) Yb_ulddi = base_regressor_UR10E(q_msrd(i,:)',... qd_fltrd(i,:)',q2d_est(i,:)'); Yfrctni = ur10_frctn_rgsr(qd_fltrd(i,:)'); Ydrvi = ur10_drv_rgsr(q2d_est(i,:)'); Wb_uldd = vertcat(Wb_uldd,[Yb_ulddi, Ydrvi, Yfrctni]); I_uldd = vertcat(I_uldd, diag(i_fltrd(i,:))); end Wb_ldd = []; Wl = []; I_ldd = []; for i = 1:2:length(t_msrd_ldd) Yb_lddi = base_regressor_UR10E(q_msrd_ldd(i,:)',... qd_fltrd_ldd(i,:)',q2d_est_ldd(i,:)'); Yfrctni = ur10_frctn_rgsr(qd_fltrd_ldd(i,:)'); Ydrvi = ur10_drv_rgsr(q2d_est_ldd(i,:)'); Yli = load_regressor_UR10E(q_msrd_ldd(i,:)',... qd_fltrd_ldd(i,:)',q2d_est_ldd(i,:)'); Wb_ldd = vertcat(Wb_ldd,[Yb_lddi, Ydrvi, Yfrctni]); Wl = vertcat(Wl,Yli); I_ldd = vertcat(I_ldd, diag(i_fltrd_ldd(i,:))); end % ---------------------------------------------------------------------- % Set-up SDP optimization procedure % ----------------------------------------------------------------------- drv_gns = sdpvar(6,1); % variables for base paramters pi_load_unknw = sdpvar(9,1); % varaibles for unknown load paramters pi_frctn = sdpvar(18,1); pi_rtr = sdpvar(4,1); pi_b = sdpvar(36,1); % variables for base paramters pi_d = sdpvar(24,1); % variables for dependent paramters % Bijective mapping from [pi_b; pi_d] to standard parameters pi pii = [Pb' Pd']*[ eye(36) -Kd; zeros(24,36) eye(24) ]*[pi_b; pi_d]; % Feasibility contrraints of the link paramteres cnstr = diag(drv_gns)>0; for i = 1:10:60 link_inertia_i = [pii(i), pii(i+1), pii(i+2); ... pii(i+1), pii(i+3), pii(i+4); ... pii(i+2), pii(i+4), pii(i+5)]; frst_mmnt_i = vec2skewSymMat(pii(i+6:i+8)); Di = [link_inertia_i, frst_mmnt_i'; frst_mmnt_i, pii(i+9)*eye(3)]; cnstr = [cnstr, Di>0]; end % Feasibility constraints on the load paramters load_inertia = [pi_load_unknw(1), pi_load_unknw(2), pi_load_unknw(3); ... pi_load_unknw(2), pi_load_unknw(4), pi_load_unknw(5); ... pi_load_unknw(3), pi_load_unknw(5), pi_load_unknw(6)]; load_frst_mmnt = vec2skewSymMat(pi_load_unknw(7:9)); Dl = [load_inertia, load_frst_mmnt'; load_frst_mmnt, m_load*eye(3)]; cnstr = [cnstr, Dl>0]; % Feasibility constraints on the friction prameters for i = 1:6 cnstr = [cnstr, pi_frctn(3*i-2)>0, pi_frctn(3*i-1)>0]; end % Feasibiliy of the rotor inertia cnstr = [cnstr, diag(pi_rtr)>0]; % Defining pbjective function t1 = [zeros(size(I_uldd,1),1); -Wl(:,end)*m_load]; t2 = [-I_uldd, Wb_uldd, zeros(size(Wb_uldd,1), size(Wl,2)-1); ... -I_ldd, Wb_ldd, Wl(:,1:9) ]; obj = norm(t1 - t2*[drv_gns; pi_b; pi_rtr; pi_frctn; pi_load_unknw]); % Solving sdp problem sol = optimize(cnstr,obj,sdpsettings('solver','sdpt3')); % Getting values of the estimated patamters drv_gns = value(drv_gns); % ----------------------------------------------------------------------- % When drive gains are known we optimize for paramters % ----------------------------------------------------------------------- %Constracting regressor matrix Wb_uldd = []; Tau_uldd = []; for i = 1:6:length(t_msrd) Yb_ulddi = base_regressor_UR10E(q_msrd(i,:)',... qd_fltrd(i,:)',q2d_est(i,:)'); Yfrctni = ur10_frctn_rgsr(qd_fltrd(i,:)'); Ydrvi = ur10_drv_rgsr(q2d_est(i,:)'); Wb_uldd = vertcat(Wb_uldd,[Yb_ulddi, Ydrvi, Yfrctni]); Tau_uldd = vertcat(Tau_uldd, diag(drv_gns)*i_fltrd(i,:)'); end pi_frctn = sdpvar(18,1); pi_rtr = sdpvar(4,1); pi_b = sdpvar(36,1); % variables for base paramters pi_d = sdpvar(24,1); % variables for dependent paramters % Bijective mapping from [pi_b; pi_d] to standard parameters pi pii = [Pb' Pd']*[ eye(36) -Kd; zeros(24,36) eye(24) ]*[pi_b; pi_d]; % Feasibility contrraints of the link paramteres cnstr = []; for i = 1:10:60 link_inertia_i = [pii(i), pii(i+1), pii(i+2); ... pii(i+1), pii(i+3), pii(i+4); ... pii(i+2), pii(i+4), pii(i+5)]; frst_mmnt_i = vec2skewSymMat(pii(i+6:i+8)); Di = [link_inertia_i, frst_mmnt_i'; frst_mmnt_i, pii(i+9)*eye(3)]; cnstr = [cnstr, Di>0]; end % Feasibility constraints on the friction prameters for i = 1:6 cnstr = [cnstr, pi_frctn(3*i-2)>0, pi_frctn(3*i-1)>0]; end % Feasibiliy of the rotor inertia cnstr = [cnstr, diag(pi_rtr)>0]; % Defining pbjective function obj = norm(Tau_uldd - Wb_uldd*[pi_b; pi_rtr; pi_frctn]); % Solving sdp problem sol2 = optimize(cnstr,obj,sdpsettings('solver','sdpt3')); pi_frctn = value(pi_frctn); pi_rtr = value(pi_rtr); pi_b = value(pi_b); % variables for base paramters return % ------------------------------------------------------------------------ % Using SDP to find load parmeters along with drive gains % ------------------------------------------------------------------------ %{ %Constracting regressor matrix Wl = []; I_uldd = []; I_ldd = []; for i = 1:length(t_msrd_ldd) Yli = load_regressor_UR10E(q_msrd_ldd(i,:)',... qd_fltrd_ldd(i,:)',q2d_est_ldd(i,:)'); Wl = vertcat(Wl,Yli); I_uldd = vertcat(I_uldd, diag(i_fltrd(i,:))); I_ldd = vertcat(I_ldd, diag(i_fltrd_ldd(i,:))); end m_load = 1.069; drv_gns = sdpvar(6,1); % variables for base paramters pi_load_unknw = sdpvar(9,1); % varaibles for unknown load paramters % Feasibility contrraints load_inertia = [pi_load_unknw(1), pi_load_unknw(2), pi_load_unknw(3); ... pi_load_unknw(2), pi_load_unknw(4), pi_load_unknw(5); ... pi_load_unknw(3), pi_load_unknw(5), pi_load_unknw(6)]; load_frst_mmnt = vec2skewSymMat(pi_load_unknw(7:9)); D = [load_inertia, load_frst_mmnt'; load_frst_mmnt, m_load*eye(3)]; % Overall Constraints cnstr = [drv_gns>0, D>0]; % Objective function t1 = I_ldd - I_uldd(1:length(I_ldd),:); t2 = [-t1, Wl(:,1:9)]*[drv_gns;pi_load_unknw]; obj = norm(-Wl(:,end)*m_load - t2); % Solving sdp problem sol = optimize(cnstr,obj,sdpsettings('solver','sdpt3')); %}